Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioessays ; 45(3): e2200203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642848

RESUMO

Interferons (IFNs) are a diverse group of cytokines whose potent antitumor effects have piqued the interest of scientists for decades. Some of the most sustained clinical accomplishments have been in the field of myeloproliferative neoplasms (MPNs). Here, we discuss how both historical and novel breakthroughs in our understanding of IFN function may lead to more effective therapies for MPNs. The particular relevance and importance of modulating the novel IFN-regulated ULK1 pathway to optimize IFN responses is highlighted.


Assuntos
Neoplasias Hematológicas , Interferons , Humanos , Interferons/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/patologia , Neoplasias Hematológicas/tratamento farmacológico
2.
Semin Immunol ; 43: 101299, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31771762

RESUMO

The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.


Assuntos
Imunoterapia/tendências , Interferons/metabolismo , Neoplasias/imunologia , Animais , Antígeno B7-H1/metabolismo , Humanos , Imunidade , Vigilância Imunológica , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
3.
J Biol Chem ; 294(3): 827-837, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487288

RESUMO

Type I interferons (IFNs) induce expression of multiple genes that control innate immune responses to invoke both antiviral and antineoplastic activities. Transcription of these interferon-stimulated genes (ISGs) occurs upon activation of the canonical Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathways. Phosphorylation and acetylation are both events crucial to tightly regulate expression of ISGs. Here, using mouse embryonic fibroblasts and an array of biochemical methods including immunoblotting and kinase assays, we show that sirtuin 2 (SIRT2), a member of the NAD-dependent protein deacetylase family, is involved in type I IFN signaling. We found that SIRT2 deacetylates cyclin-dependent kinase 9 (CDK9) in a type I IFN-dependent manner and that the CDK9 deacetylation is essential for STAT1 phosphorylation at Ser-727. We also found that SIRT2 is subsequently required for the transcription of ISGs and for IFN-driven antiproliferative responses in both normal and malignant cells. These findings establish the existence of a previously unreported signaling pathway whose function is essential for the control of JAK-STAT signaling and the regulation of IFN responses. Our findings suggest that targeting sirtuin activities may offer an avenue in the development of therapies for managing immune-related diseases and cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Interferon Tipo I/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Sirtuína 2/metabolismo , Acetilação , Animais , Quinase 9 Dependente de Ciclina/genética , Humanos , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT1/genética , Sirtuína 2/genética , Transcrição Gênica , Células U937
4.
J Biol Chem ; 292(11): 4743-4752, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28174303

RESUMO

The precise signaling mechanisms by which type II IFN receptors control expression of unique genes to induce biological responses remain to be established. We provide evidence that Sin1, a known element of the mammalian target of rapamycin complex 2 (mTORC2), is required for IFNγ-induced phosphorylation and activation of AKT and that such activation mediates downstream regulation of mTORC1 and its effectors. These events play important roles in the assembly of the eukaryotic translation initiation factor 4F (eIF4F) and mRNA translation of IFN-stimulated genes. Interestingly, IFNγ-induced tyrosine phosphorylation of STAT1 is reduced in cells with targeted disruption of Sin1, leading to decreased transcription of several IFNγ-inducible genes in an mTORC2-independent manner. Additionally, our studies establish that Sin1 is essential for generation of type II IFN-dependent antiviral effects and antiproliferative responses in normal and malignant hematopoiesis. Together, our findings establish an important role for Sin1 in both transcription and translation of IFN-stimulated genes and type II IFN-mediated biological responses, involving both mTORC2-dependent and -independent functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Transporte/imunologia , Interferon gama/imunologia , Animais , Linhagem Celular , Humanos , Imunidade Inata , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/imunologia , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/imunologia , Transdução de Sinais
5.
Blood ; 128(3): 410-4, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27307295

RESUMO

Mitogen-activated protein kinase interacting protein kinases (Mnks) play important roles in the development and progression of acute myeloid leukemia (AML) by regulating eukaryotic translation initiation factor 4E (eIF4E) activation. Inhibiting Mnk1/2-induced phosphorylation of eIF4E may represent a unique approach for the treatment of AML. We provide evidence for antileukemic effects of merestinib, an orally bioavailable multikinase inhibitor with suppressive effects on Mnk activity. Our studies show that merestinib effectively blocks eIF4E phosphorylation in AML cells and suppresses primitive leukemic progenitors from AML patients in vitro and in an AML xenograft model in vivo. Our findings provide evidence for potent preclinical antileukemic properties of merestinib and support its clinical development for the treatment of patients with AML.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Transporte de Cátions/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , ATPases Transportadoras de Cobre , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimologia , Camundongos , Proteínas de Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Trends Immunol ; 36(1): 21-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25592035

RESUMO

Optimal regulation of immune networks is essential for the generation of effective immune responses, and defects in such networks can lead to immunodeficiency while uncontrolled responses can result in autoimmune disorders. mTOR and STAT signaling cascades are key regulators of the differentiation and function of cells of the immune system. Both pathways act as sensors and transducers of environmental stimuli, and recent evidence has revealed points of crosstalk between these pathways, highlighting synergistic regulation of immune cell differentiation and function. We review here the current understanding of mTOR and STAT interactions in T cells and innate immune cells, and discuss potential mechanisms underlying these events. We further outline models for the intersection of these pathways in the regulation of immunity and highlight important areas for future research.


Assuntos
Imunidade/fisiologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/metabolismo , Ligação Proteica , Receptor de Interferon alfa e beta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
J Biol Chem ; 291(5): 2389-96, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26645692

RESUMO

We provide evidence for a unique pathway engaged by the type II IFN receptor, involving mTORC2/AKT-mediated downstream regulation of mTORC1 and effectors. These events are required for formation of the eukaryotic translation initiation factor 4F complex (eIF4F) and initiation of mRNA translation of type II interferon-stimulated genes. Our studies establish that Rictor is essential for the generation of type II IFN-dependent antiviral and antiproliferative responses and that it controls the generation of type II IFN-suppressive effects on normal and malignant hematopoiesis. Together, our findings establish a central role for mTORC2 in IFNγ signaling and type II IFN responses.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Interferon gama/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Quimiocina CXCL10/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Knockout , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Células U937
8.
Cytokine ; 89: 116-121, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27094611

RESUMO

Dysregulation of mRNA translation leads to aberrant activation of cellular pathways that promote expansion and survival of leukemic clones. A key element of the initiation translation complex is eIF4E (eukaryotic translation initiation factor 4E). The mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) pathways play important roles in the regulation of eIF4E expression and downstream functional outcomes. Mitogen-activated protein kinase interacting protein kinases (Mnks) control translation by phosphorylation of eIF4E, whereas the mTOR kinase phosphorylates/de-activates the eIF4E inhibitor, 4E-BP1, to release translational repression. Both pathways are often abnormally activated in leukemia cells and promote cell survival events by controlling expression of oncogenic proteins. Targeting these pathways may provide approaches to avoid aberrant proliferation and neoplastic transformation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
9.
Mol Genet Metab ; 114(3): 397-402, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533111

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of acute leukemia diagnosed in adults and the second most common type in children. The overall survival is poor and treatment is associated with significant complications and even death. In addition, a significant number of patients will not respond to therapy or relapse. In this review, several new signaling proteins aberrantly regulated in AML are described, including CREB, Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic agents will provide novel approaches to treat AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , Transdução de Sinais , Adulto , Criança , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Cancer Res Commun ; 3(5): 943-951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377894

RESUMO

Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN. Remarkably, targeted silencing of CHAF1B enhances transcription of IFNα-stimulated genes and promotes IFNα-dependent antineoplastic responses in primary MPN progenitor cells. Taken together, our findings indicate that CHAF1B is a promising newly identified therapeutic target in MPN and that CHAF1B inhibition in combination with IFNα therapy might offer a novel strategy for treating patients with MPN. Significance: Our findings raise the potential for clinical development of drugs targeting CHAF1B to enhance IFN antitumor responses in the treatment of patients with MPN and should have important clinical translational implications for the treatment of MPN and possibly in other malignancies.


Assuntos
Neoplasias da Medula Óssea , Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Interferon-alfa/farmacologia , Fator 1 de Modelagem da Cromatina/genética
11.
Mol Cancer Res ; 21(4): 332-344, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573964

RESUMO

Immune checkpoint inhibitors (ICI) have transformed the treatment of melanoma. However, the majority of patients have primary or acquired resistance to ICIs, limiting durable responses and patient survival. IFNγ signaling and the expression of IFNγ-stimulated genes correlate with either response or resistance to ICIs, in a context-dependent manner. While IFNγ-inducible immunostimulatory genes are required for response to ICIs, chronic IFNγ signaling induces the expression of immunosuppressive genes, promoting resistance to these therapies. Here, we show that high levels of Unc-51 like kinase 1 (ULK1) correlate with poor survival in patients with melanoma and overexpression of ULK1 in melanoma cells enhances IFNγ-induced expression of immunosuppressive genes, with minimal effects on the expression of immunostimulatory genes. In contrast, genetic or pharmacologic inhibition of ULK1 reduces expression of IFNγ-induced immunosuppressive genes. ULK1 binds IRF1 in the nuclear compartment of melanoma cells, controlling its binding to the programmed death-ligand 1 promoter region. In addition, pharmacologic inhibition of ULK1 in combination with anti-programmed cell death protein 1 therapy further reduces melanoma tumor growth in vivo. Our data suggest that targeting ULK1 represses IFNγ-dependent immunosuppression. These findings support the combination of ULK1 drug-targeted inhibition with ICIs for the treatment of patients with melanoma to improve response rates and patient outcomes. IMPLICATIONS: This study identifies ULK1, activated downstream of IFNγ signaling, as a druggable target to overcome resistance mechanisms to ICI therapy in metastatic melanoma.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Interferon gama/farmacologia , Terapia de Imunossupressão , Tolerância Imunológica , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
12.
Int J Cancer ; 131(11): 2553-61, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22488198

RESUMO

Estrogen receptor-beta (ERß) has been suggested to exert anti-inflammatory and anti-tumorigenic effects in the colon, providing a translational potential to prevent and/or treat inflammatory bowel disease (IBD) and its progression to colitis-associated colorectal cancer (CAC). However, the specific direct role of ERß in CAC has not yet been tested. We assessed the effects of ERß deficiency in the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC model using ERß knockout (ßERKO) mice and wild-type (WT) littermates. These mice were injected with AOM followed by 1 week of DSS treatment, and sacrificed on weeks 9 or 16. ßERKO mice developed more severe clinical colitis compared to WT mice, as evidenced by significantly higher disease activity index after DSS treatment, weight to length ratio of the colons, inflammation score and grade of dysplasia. ERß-deficient colons presented greater number and size of polyps at weeks 9 and 16, respectively, and were characterized by a significant increase in interleukin (IL)-6, IL-17, tumor necrosis factor alpha and interferon-gamma mRNA levels. Furthermore, higher protein expression levels of nuclear factor-kappa B, inducible nitric oxide synthase, ß-catenin, proliferating cell nuclear antigen, mucin-1 and significantly lower caveolin-1 and mucin-2 protein levels were shown in ßERKO mice compared to WT mice. These data suggest a possible anti-inflammatory and anti-neoplastic mechanism of action of ERß in CAC. These results demonstrate for the first time that ERß provides protection in the AOM/DSS-induced CAC model in mice, suggesting a preventive and/or therapeutic potential for the use of ERß-selective agonists in IBD.


Assuntos
Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptor beta de Estrogênio/metabolismo , Neoplasias/genética , Neoplasias/patologia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Diferenciação Celular/genética , Colite/genética , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Estradiol/sangue , Receptor beta de Estrogênio/genética , Feminino , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-1/genética , Mucina-1/metabolismo , Mucina-2/genética , Mucina-2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Mol Immunol ; 147: 1-9, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489289

RESUMO

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to hijack angiotensin converting enzyme 2 (ACE2) for entry into mammalian cells. A short isoform of ACE2, termed deltaACE2 (dACE2), has recently been identified. In contrast to ACE2, the short dACE2 isoform lacks the ability to bind the spike protein of SARS-CoV-2. Several studies have proposed that expression of ACE2 and/or dACE2 is induced by interferons (IFNs). Here, we report that drug-targeted inhibition or silencing of Unc51-like kinase 1 (ULK1) results in repression of type I IFN-induced expression of the dACE2 isoform. Notably, dACE2 is expressed in various squamous tumors. In efforts to identify pharmacological agents that target this pathway, we found that fisetin, a natural flavonoid, is an ULK1 inhibitor that decreases type I IFN-induced dACE2 expression. Taken together, our results establish a requirement for ULK1 in the regulation of type I IFN-induced transcription of dACE2 and raise the possibility of clinical translational applications of fisetin as a novel ULK1 inhibitor.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Interferon-alfa , Mamíferos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , SARS-CoV-2
14.
Nat Commun ; 13(1): 1750, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365653

RESUMO

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Antivirais/uso terapêutico , Retroalimentação , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Quinases Associadas a rho/metabolismo
15.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801234

RESUMO

The interferons (IFNs) are essential components of the immune response against infections and malignancies. IFNs are potent promoters of the anti-tumor response, but there is also evidence that feedback mechanisms regulated by IFNs negatively control immune responses to avoid hyper-activation and limit inflammation. This balance of responses plays an important role in cancer surveillance, immunoediting and response to anticancer therapeutic approaches. Here we review the roles of both type I and type II IFNs on the control of the immune response against malignancies in the context of effects on both malignant cells and cells of the immune system in the tumor microenvironment.

16.
Cancers (Basel) ; 13(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669271

RESUMO

Cytokines are key molecules within the tumor microenvironment (TME) that can be used as biomarkers to predict the magnitude of anti-tumor immune responses. During immune monitoring, it has been customary to predict outcomes based on the abundance of a single cytokine, in particular IFN-γ or TGF-ß, as a readout of ongoing anti-cancer immunity. However, individual cytokines within the TME can exhibit dual opposing roles. For example, both IFN-γ and TGF-ß have been associated with pro- and anti-tumor functions. Moreover, cytokines originating from different cellular sources influence the crosstalk between CD4+ and CD8+ T cells, while the array of cytokines expressed by T cells is also instrumental in defining the mechanisms of action and efficacy of treatments. Thus, it becomes increasingly clear that a reliable readout of ongoing immunity within the TME will have to include more than the measurement of a single cytokine. This review focuses on defining a panel of cytokines that could help to reliably predict and analyze the outcomes of T cell-based anti-tumor therapies.

17.
Oncotarget ; 12(10): 955-966, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012509

RESUMO

The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.

18.
Oncogene ; 40(18): 3273-3286, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33846574

RESUMO

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes. Our studies establish novel regulatory effects of SLFN5 on cell cycle progression through binding/blocking of the transcriptional repressor E2F7, promoting transcription of key genes that stimulate S phase progression. Together, our studies suggest an essential role for SLFN5 in PDAC and support the potential for developing new therapeutic approaches for the treatment of pancreatic cancer through SLFN5 targeting.


Assuntos
Neoplasias Pancreáticas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas
19.
Oncotarget ; 10(67): 7112-7121, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31903169

RESUMO

MAPK interacting kinase (MNK), a downstream effector of mitogen-activated protein kinase (MAPK) pathways, activates eukaryotic translation initiation factor 4E (eIF4E) and plays a key role in the mRNA translation of mitogenic and antiapoptotic genes in acute myeloid leukemia (AML) cells. We examined the antileukemic properties of a novel MNK inhibitor, SEL201. Our studies provide evidence that SEL201 suppresses eIF4E phosphorylation on Ser209 in AML cell lines and in primary patient-derived AML cells. Such effects lead to growth inhibitory effects and leukemic cell apoptosis, as well as suppression of leukemic progenitor colony formation. Combination of SEL201 with 5'-azacytidine or rapamycin results in synergistic inhibition of AML cell growth. Collectively, these results suggest that SEL201 has significant antileukemic activity and further underscore the relevance of the MNK pathway in leukemogenesis.

20.
Mol Cell Biol ; 38(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866656

RESUMO

Although members of the Slfn family have been implicated in the regulation of type I interferon (IFN) responses, the mechanisms by which they mediate their effects remain unknown. In the present study, we provide evidence that targeted disruption of the Slfn2 gene leads to increased transcription of IFN-stimulated genes (ISGs) and enhanced type I IFN-mediated antiviral responses. We demonstrate that Slfn2 interacts with protein phosphatase 6 regulatory subunit 1 (PPP6R1), leading to reduced type I IFN-induced activation of nuclear factor kappa B (NF-κB) signaling, resulting in reduced expression of ISGs. Altogether, these data suggest a novel mechanism by which Slfn2 controls ISG expression and provide evidence for a critical role for Slfn2 in the regulation of IFN-mediated biological responses.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , Animais , Sítios de Ligação/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Células Cultivadas , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Células NIH 3T3 , Fosfoproteínas Fosfatases/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA