Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 56: e12946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909497

RESUMO

The role of cyclooxygenase (COXs) isoforms in maintaining colonic mucosal integrity is not fully understood. This study aimed to evaluate the role of COX-1 and -2 on colonic mucosal integrity in an experimental colitis model. Colitis was induced in Wistar rats by intracolonic administration of 2,4,6-trinitrobenzenesulfonic acid (20 mg + 50% ethanol). The control group (sham group) received saline only. After 7, 14, or 28 days, colonic samples were removed, and macroscopic lesion scores, wet weight, myeloperoxidase activity, and transepithelial electrical resistance (TER) were determined. In other rat groups, colonic samples from the sham group and a 7th day post-colitis group were mounted in Üssing chambers with the luminal side exposed to a buffer solution (control), acetylsalicylic acid (ASA), SC-560 (COX-1 inhibitor), or celecoxib (COX-2 inhibitor). TER and epithelial permeability to fluorescein were measured. The 7th day colitis group had higher macroscopic damage scores, wet weight, and myeloperoxidase activity and lower basal TER than the sham, 14th day colitis, and 28th day colitis groups. Inhibition of COX-1 but not COX-2 significantly decreased TER and increased permeability to fluorescein in the 7th day post-colitis group compared to the sham group. Additionally, ASA decreased the colonic mucosal integrity on day seven post-colitis compared to the sham group. A decrease in the colonic mucosa integrity in the experimental colitis model can be aggravated only by the inhibition of COX-1, which demonstrated the importance of this enzyme in the maintenance of colonic mucosal integrity.


Assuntos
Colite , Peroxidase , Ratos , Animais , Ratos Wistar , Colite/induzido quimicamente , Colite/patologia , Mucosa Intestinal , Aspirina , Ciclo-Oxigenase 2 , Fluoresceínas
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12946, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520470

RESUMO

The role of cyclooxygenase (COXs) isoforms in maintaining colonic mucosal integrity is not fully understood. This study aimed to evaluate the role of COX-1 and -2 on colonic mucosal integrity in an experimental colitis model. Colitis was induced in Wistar rats by intracolonic administration of 2,4,6-trinitrobenzenesulfonic acid (20 mg + 50% ethanol). The control group (sham group) received saline only. After 7, 14, or 28 days, colonic samples were removed, and macroscopic lesion scores, wet weight, myeloperoxidase activity, and transepithelial electrical resistance (TER) were determined. In other rat groups, colonic samples from the sham group and a 7th day post-colitis group were mounted in Üssing chambers with the luminal side exposed to a buffer solution (control), acetylsalicylic acid (ASA), SC-560 (COX-1 inhibitor), or celecoxib (COX-2 inhibitor). TER and epithelial permeability to fluorescein were measured. The 7th day colitis group had higher macroscopic damage scores, wet weight, and myeloperoxidase activity and lower basal TER than the sham, 14th day colitis, and 28th day colitis groups. Inhibition of COX-1 but not COX-2 significantly decreased TER and increased permeability to fluorescein in the 7th day post-colitis group compared to the sham group. Additionally, ASA decreased the colonic mucosal integrity on day seven post-colitis compared to the sham group. A decrease in the colonic mucosa integrity in the experimental colitis model can be aggravated only by the inhibition of COX-1, which demonstrated the importance of this enzyme in the maintenance of colonic mucosal integrity.

3.
Neurogastroenterol Motil ; : e13340, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29573069

RESUMO

BACKGROUND: Microscopic inflammation and impairment of the esophageal epithelial barrier are considered relevant for perception of symptoms in patients with nonerosive reflux disease (NERD). In these patients, the receptor transient receptor potential vanilloid 1 (TRPV1) is overexpressed in the esophageal mucosa, but its role is not yet fully understood. We evaluated the role of TRPV1 in esophageal inflammation and mucosal barrier impairment in a murine model of NERD. METHODS: Nonerosive reflux disease was surgically induced in Swiss mice by pyloric substenosis and ligature of the gastric fundus, and the mice were killed 7 days post surgery. The experimental groups were: I, sham surgery (negative control); II, NERD untreated; III and IV, NERD + SB366791 or capsazepine (TRPV1 antagonists); and V, NERD + resiniferatoxin (for long-term desensitization of TRPV1). The esophagus was collected for western blotting and histopathology and for evaluation of wet weight, myeloperoxidase (MPO), keratinocyte-derived chemokine (KC), transepithelial electrical resistance (TEER), and basal permeability to fluorescein. KEY RESULTS: Compared to sham, NERD mice had increased esophageal wet weight and MPO and KC levels. The mucosa had no ulcers but exhibited inflammation. NERD mice showed mucosal TRPV1 overexpression, a more pronounced decrease in TEER at pH 0.5 (containing pepsin and taurodeoxycholic acid), and increased basal permeability. Pharmacological modulation of TRPV1 prevented esophageal inflammation development, TEER changes by acidic exposure, and increase in esophageal permeability. CONCLUSIONS & INFERENCES: The TRPV1 receptor has a critical role in esophageal inflammation and mucosal barrier impairment in NERD mice, suggesting that TRPV1 might be a pharmacological target in patients with NERD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA