Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1376-1386, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596315

RESUMO

Identifying potential cancer-associated genes and drug targets from omics data is challenging due to its diverse sources and analyses, requiring advanced skills and large amounts of time. To facilitate such analysis, we developed Cat-E (Cancer Target Explorer), a novel R/Shiny web tool designed for comprehensive analysis with evaluation according to cancer-related omics data. Cat-E is accessible at https://cat-e.bioinfo-wuerz.eu/. Cat-E compiles information on oncolytic viruses, cell lines, gene markers, and clinical studies by integrating molecular datasets from key databases such as OvirusTB, TCGA, DrugBANK, and PubChem. Users can use all datasets and upload their data to perform multiple analyses, such as differential gene expression analysis, metabolic pathway exploration, metabolic flux analysis, GO and KEGG enrichment analysis, survival analysis, immune signature analysis, single nucleotide variation analysis, dynamic analysis of gene expression changes and gene regulatory network changes, and protein structure prediction. Cancer target evaluation by Cat-E is demonstrated here on lung adenocarcinoma (LUAD) datasets. By offering a user-friendly interface and detailed user manual, Cat-E eliminates the need for advanced computational expertise, making it accessible to experimental biologists, undergraduate and graduate students, and oncology clinicians. It serves as a valuable tool for investigating genetic variations across diverse cancer types, facilitating the identification of novel diagnostic markers and potential therapeutic targets.

2.
Comput Struct Biotechnol J ; 21: 2767-2779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181657

RESUMO

PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.

3.
Turk J Biol ; 47(6): 393-405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38681774

RESUMO

Background/aim: Understanding the mechanism of host transcriptomic response to infection by the SARS-CoV-2 virus is crucial, especially for patients suffering from long-term effects of COVID-19, such as long COVID or pericarditis inflammation, potentially linked to side effects of the SARS-CoV-2 spike proteins. We conducted comprehensive transcriptome and enrichment analyses on lung and peripheral blood mononuclear cells (PBMCs) infected with SARS-CoV-2, as well as on SARS-CoV and MERS-CoV, to uncover shared pathways and elucidate their common disease progression and viral replication mechanisms. Materials and methods: We developed CompCorona, the first interactive online tool for visualizing gene response variance among the family Coronaviridae through 2D and 3D principal component analysis (PCA) and exploring systems biology variance using pathway plots. We also made preprocessed datasets of lungs and PBMCs infected by SARS-CoV-2, SARS-CoV, and MERS-CoV publicly available through CompCorona. Results: One remarkable finding from the lung and PBMC datasets for infections by SARS-CoV-2, but not infections by other coronaviruses (CoVs), was the significant downregulation of the angiogenin (ANG) and vascular endothelial growth factor A (VEGFA) genes, both directly involved in epithelial and vascular endothelial cell dysfunction. Suppression of the TNF signaling pathway was also observed in cells infected by SARS-CoV-2, along with simultaneous activation of complement and coagulation cascades and pertussis pathways. The ribosome pathway was found to be universally suppressed across all three viruses. The CompCorona online tool enabled the comparative analysis of 9 preprocessed host transcriptome datasets of cells infected by CoVs, revealing the specific host response differences in cases of SARS-CoV-2 infection. This included identifying markers of epithelial dysfunction via interactive 2D and 3D PCA, Venn diagrams, and pathway plots. Conclusion: Our findings suggest that infection by SARS-CoV-2 might induce pulmonary epithelial dysfunction, a phenomenon not observed in cells infected by other CoVs. The publicly available CompCorona tool, along with the preprocessed datasets of cells infected by various CoVs, constitutes a valuable resource for further research into CoV-associated syndromes.

4.
Front Genet ; 12: 585556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747035

RESUMO

In recent years, a substantial number of tissue microbiome studies have been published, mainly due to the recent improvements in the minimization of microbial contamination during whole transcriptome analysis. Another reason for this trend is due to the capability of next-generation sequencing (NGS) to detect microbiome composition even in low biomass samples. Several recent studies demonstrate a significant role for the tissue microbiome in the development and progression of cancer and other diseases. For example, the increase of the abundance of Proteobacteria in tumor tissues of the breast has been revealed by gene expression analysis. The link between human papillomavirus infection and cervical cancer has been known for some time, but the relationship between the microbiome and breast cancer (BC) is more novel. There are also recent attempts to investigate the possible link between the brain microbiome and the cognitive dysfunction caused by neurological diseases. Such studies pointing to the role of the brain microbiome in Huntington's disease (HD) and Alzheimer's disease (AD) suggest that microbial colonization is a risk factor. In this review, we aim to summarize the studies that associate the tissue microbiome, rather than gut microbiome, with cancer and other diseases using whole-transcriptome analysis, along with 16S rRNA analysis. After providing several case studies for each relationship, we will discuss the potential role of transcriptome analysis on the broader portrayal of the pathophysiology of the breast, brain, and vaginal microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA