Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Tissue Bank ; 23(2): 385-394, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34471945

RESUMO

Reconstructive surgery techniques have evolved exponentially in last decades. From regional flaps to free tissue transfer, tissue movilization has become the gold standart treatment in many reconstructive procedures. Main disadvantage from these techniques lies in the possibility of sequels in donor zone. Furthermore, raising comorbidities in general population and growing indications for reconstructive surgery in elder people, have triggered the development of new biomaterials which can offer support in the reconstruction while elicit donor zone morbidity. Advances in tissue decellularization techniques have brought numerous matrices which have shown effectivity in many reconstructive procedures. Use of acellular dermal matrices may become an eligible solution for many reconstructive procedures. From breast reconstruction assisted by matrices to complex wound coverage passing throught tendon repair techniques, acellular dermal matrices have shown effectiveness in last studies. Local production of this biomaterial leads to cost minimization derived from harvesting and manufacturing matrices in our centre and avoid out-of-stock and storage issues. Current original protocol proposed by our group include all steps from harvesting samples from cadaveric donors till matrix storage after decellularization proccess. The result is a high valued biomaterial in terms of biocompatibility and security profile available.


Assuntos
Derme Acelular , Mamoplastia , Idoso , Materiais Biocompatíveis , Humanos , Mamoplastia/métodos , Cicatrização
2.
Epilepsy Behav ; 121(Pt A): 108012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022622

RESUMO

The baboon offers a natural model for genetic generalized epilepsy with photosensitivity. In this review, we will summarize some of the more important clinical, neuroimaging, and elctrophysiological findings form recent work performed at the Southwest National Primate Research Center (SNPRC, Texas Biomedical Research Institute, San Antonio, Texas), which houses the world's largest captive baboon pedigree. Due to the phylogenetic proximity of the baboon to humans, many of the findings are readily translatable, but there may be some important differences, such as the mutlifocality of the ictal and interictal epileptic discharges (IEDs) on intracranial electroencephalography (EEG) and greater parieto-occipital connectivity of baboon brain networks compared to juvenile myoclonic epilepsy in humans. Furthermore, there is still limited knowledge of the natural history of the epilepsy, which could be transformative for research into epileptogenesis in genetic generalized epilepsy (GGE) and sudden unexpected death in epilepsy (SUDEP).


Assuntos
Eletroencefalografia , Epilepsia Generalizada , Animais , Papio , Filogenia , Texas
3.
J Biol Chem ; 292(38): 15598-15610, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28726643

RESUMO

One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales, Methanosarcinales, and Methanococcales, as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales.


Assuntos
Complexos de ATP Sintetase/metabolismo , Evolução Molecular , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Sequência de Aminoácidos , Euryarchaeota/enzimologia , Frutosefosfatos/metabolismo , Glucose/metabolismo , Cinética , Modelos Moleculares , Mutação , Filogenia , Conformação Proteica , Especificidade por Substrato
4.
Epilepsia ; 56(10): 1580-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26290449

RESUMO

OBJECTIVE: The baboon provides a natural model of genetic generalized epilepsy (GGE). This study compares the intrinsic connectivity networks of epileptic and healthy control baboons using resting-state functional magnetic resonance imaging (rs-fMRI) and data-driven functional connectivity mapping. METHODS: Twenty baboons, matched for gender, age, and weight, were classified into two groups (10 epileptic [EPI], 10 control [CTL]) on the basis of scalp electroencephalography (EEG) findings. Each animal underwent one MRI session that acquired one 5-min resting state fMRI scan and one anatomic MRI scan-used for registration and spatial normalization. Using independent component analysis, we identified 14 unique components/networks, which were then used to characterize each group's functional connectivity maps of each brain network. RESULTS: The epileptic group demonstrated network-specific differences in functional connectivity when compared to the control animals. The sensitivity and specificity of the two groups' functional connectivity maps differed significantly in the visual, motor, amygdala, insular, and default mode networks. Significant increases were found in the occipital gyri of the epileptic group's functional connectivity map for the default mode, cingulate, intraparietal, motor, visual, amygdala, and thalamic regions. SIGNIFICANCE: This is the first study using resting-state fMRI to demonstrate intrinsic functional connectivity differences between epileptic and control nonhuman primates. These results are consistent with seed-based GGE studies in humans; however, our use of a data-driven approach expands the scope of functional connectivity mapping to include brain regions/networks comprising the whole brain.


Assuntos
Encéfalo/patologia , Epilepsia Generalizada , Vias Neurais/patologia , Descanso , Animais , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Epilepsia Generalizada/genética , Epilepsia Generalizada/patologia , Epilepsia Generalizada/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vias Neurais/irrigação sanguínea , Oxigênio/sangue , Papio
5.
J Craniofac Surg ; 26(4): 1316-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26080184

RESUMO

PURPOSE: The aim of this study was to describe a surgical technique that can be used to solve dentofacial deformities associated with narrow interradicular spaces of the anterior teeth of the maxilla and inadequate overbite/overjet seen in hand-articulated models. This is presented here as an alternative to segmentation of the maxilla in Le Fort I osteotomy. METHODS: Six patients with dentofacial deformities (classes II and III malocclusions) had Le Fort I osteotomy accompanied by buccal alveolar corticotomies of the maxilla. During the immediate postoperative period, elastic forces were applied to mobilize the anterior dentoalveolar segments until the planned overjet/overbite was observed. RESULTS: All patients reached the desired occlusion approximately 1 month after the surgical procedure. Pulp vitality of the teeth adjacent to the corticotomies was not compromised. CONCLUSIONS: The clinical results obtained confirm the technique as a safe and reliable alternative to segmentation of the maxilla in orthognathic surgery.


Assuntos
Deformidades Dentofaciais/cirurgia , Má Oclusão/cirurgia , Maxila/cirurgia , Cirurgia Ortognática , Osteotomia de Le Fort/métodos , Adolescente , Adulto , Deformidades Dentofaciais/complicações , Feminino , Humanos , Masculino , Má Oclusão/etiologia , Adulto Jovem
7.
Front Vet Sci ; 9: 908801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909685

RESUMO

Characterization of baboon model of genetic generalized epilepsy (GGE) is driven both electroclinically and by successful adoption of neuroimaging platforms, such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Based upon its phylogenetic proximity and similar brain anatomy to humans, the epileptic baboon provides an excellent translational model. Its relatively large brain size compared to smaller nonhuman primates or rodents, a gyrencephalic structure compared to lissencephalic organization of rodent brains, and the availability of a large pedigreed colony allows exploration of neuroimaging markers of diseases. Similar to human idiopathic generalized epilepsy (IGE), structural imaging in the baboon is usually normal in individual subjects, but gray matter volume/concentration (GMV/GMC) changes are reported by statistical parametric mapping (SPM) analyses. Functional neuroimaging has been effective for mapping the photoepileptic responses, the epileptic network, altered functional connectivity of physiological networks, and the effects of anti-seizure therapies. This review will provide insights into our current understanding the baboon model of GGE through functional and structural imaging.

8.
Epilepsy Res ; 180: 106862, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35114431

RESUMO

PURPOSE: Cerebral blood flow (CBF) tracks physiological effects of ictal or interictal epileptic discharges (IEDs) and neurostimulation. This study compared CBF changes between high-frequency (HF; 300 Hz) microburst, and standard, low-frequency (LF; 30 Hz) vagal nerve stimulation (VNS) Therapy in 2 baboons with genetic generalized epilepsy (GGE), including one with photosensitivity. METHODS: The baboons were selected based on video recordings and scalp EEG studies. They were both implanted with Sentiva™ 1000 devices capable of stimulating at standard and microburst frequencies. Nine H215O (10-20 mCi) positron emission tomographic (PET) scans were performed each session (two PET sessions acquired for each animal). The baboons were sedated with ketamine, paralyzed, and monitored with scalp EEG. CBF changes were compared between the two modes of stimulation and resting scans in the first study, while in the second, VNS Therapy trials were combined with intermittent light stimulation (ILS) at 25 Hz and compared to CBF changes induced by ILS alone. RESULTS: ILS-associated IED rates were slightly reduced by HF- and LF-VNS Therapies in B1, while spontaneous IEDs were completely suppressed by HF-VNS Therapy in B2. Regional CBF changes were consistent between the two modes of therapy in each baboon, in particular with respect to the activation of the superior colliculus and cerebellum. Neither VNS mode suppressed the photoepileptic response in B1. In B2, IED suppression was associated with bilateral deactivations of the frontal and temporal cortices, cingulate and anterior striatum, as well as bilateral cerebellar activations. CONCLUSIONS: This pilot study reveals similar activation/deactivation patterns between LF- and HF-VNS Therapies, but the most pronounced CBF differences between the two baboons and the two modes of stimulation may have been driven by the suppression of the epileptic network by HF-VNS Therapy in B2. Some therapeutic targets appear to be subcortical, including the putamen, superior colliculus, brainstem nuclei, as well as the cerebellum, all of which modulate corticothalamic networks, which is particularly reflected by CBF changes associated with HF-VNS Therapy. These findings need to be replicated in larger samples and correlated with long-term clinical outcomes.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Animais , Circulação Cerebrovascular , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/terapia , Papio , Projetos Piloto , Estimulação do Nervo Vago/métodos
9.
Neuroimage ; 57(4): 1393-401, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21664276

RESUMO

Transcranial magnetic stimulation (TMS) has well-established applications in basic neuroscience and promising applications in neurological and psychiatric disorders. However the underlying mechanisms of TMS-induced alterations in brain function are not well understood. As a result, treatment design parameters are determined ad hoc and not informed by any coherent theory or model. Once the mechanisms underlying TMS's modulatory effects on brain systems are better understood and modeled, TMS's potential as a therapeutic and/or investigative tool will be more readily explored and exploited. An animal model is better suited to study different TMS variables, therefore we developed a baboon model to facilitate testing of some of the current theoretical models of TMS interactions with brain regions. We have demonstrated the feasibility of this approach by successfully imaging cerebral blood flow (CBF) changes with H(2)(15)O positron emission tomography imaging during high-frequency, suprathreshold repetitive TMS in the primary motor cortex of five healthy, adult baboons.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estimulação Magnética Transcraniana , Animais , Eletroencefalografia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Papio , Tomografia por Emissão de Pósitrons , Processamento de Sinais Assistido por Computador
10.
Epilepsy Res ; 155: 106156, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284120

RESUMO

The epileptic baboon provides a natural model of idiopathic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). We sought to evaluate autonomic differences, including heart rate (HR), heart rate variability (HRV) and corrected QT-duration (QTc) between two epileptic (EB1, EB2) and one control (CB) baboon, and the autonomic effects of high-frequency (HF) microburst Vagal Nerve Stimulation (VNS) Therapy in the epileptic baboons. At baseline, EB2's HR was increased over both EB1 and CB, and EB1's HRV was decreased compared to the others. QTc-intervals were significantly prolonged in both epileptic baboons. EB1 became free of generalized tonic-clonic seizures (GTCS) with VNS therapy, whereas EB2's GTCS were reduced by a third. HR decreased in both epileptic baboons, but while HRV improved in EB1, it decreased in EB2. EB2 succumbed to SUDEP after 9 months. This pilot study demonstrates abnormalities in HR, HRV and QTc-intervals in epileptic baboons. HF VNS Therapy demonstrated different effects on HRV in the two epileptic baboons, which, in addition to persistent GTCS and elevated HR, may have contributed to SUDEP risk in EB2. Future studies are needed to establish normative values for HRV and determine variability of HR, HRV and QTc-intervals in epileptic baboons.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Epilepsia/fisiopatologia , Frequência Cardíaca/fisiologia , Coração/fisiopatologia , Estimulação do Nervo Vago/métodos , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/terapia , Feminino , Papio , Projetos Piloto
11.
Soc Cogn Affect Neurosci ; 14(9): 933-945, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31588508

RESUMO

Resting-state functional connectivity (rsFC) is an emerging means of understanding the neurobiology of combat-related post-traumatic stress disorder (PTSD). However, most rsFC studies to date have limited focus to cognitively related intrinsic connectivity networks (ICNs), have not applied data-driven methodologies or have disregarded the effect of combat exposure. In this study, we predicted that group independent component analysis (GICA) would reveal group-wise differences in rsFC across 50 active duty service members with PTSD, 28 combat-exposed controls (CEC), and 25 civilian controls without trauma exposure (CC). Intranetwork connectivity differences were identified across 11 ICNs, yet combat-exposed groups were indistinguishable in PTSD vs CEC contrasts. Both PTSD and CEC demonstrated anatomically diffuse differences in the Auditory Vigilance and Sensorimotor networks compared to CC. However, intranetwork connectivity in a subset of three regions was associated with PTSD symptom severity among executive (left insula; ventral anterior cingulate) and right Fronto-Parietal (perigenual cingulate) networks. Furthermore, we found that increased temporal synchronization among visuospatial and sensorimotor networks was associated with worse avoidance symptoms in PTSD. Longitudinal neuroimaging studies in combat-exposed cohorts can further parse PTSD-related, combat stress-related or adaptive rsFC changes ensuing from combat.


Assuntos
Encéfalo/fisiopatologia , Distúrbios de Guerra/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Giro do Cíngulo/fisiopatologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Neuroimagem
12.
Neuroimage Clin ; 16: 132-141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794974

RESUMO

Resting-state functional connectivity (FC) is altered in baboons with genetic generalized epilepsy (GGE) compared to healthy controls (CTL). We compared FC changes between GGE and CTL groups after intravenous injection of valproic acid (VPA) and following one-week of orally administered VPA. Seven epileptic (2 females) and six CTL (3 females) baboons underwent resting-state fMRI (rs-fMRI) at 1) baseline, 2) after intravenous acute VPA administration (20 mg/kg), and 3) following seven-day oral, subacute VPA therapy (20-80 mg/kg/day). FC was evaluated using a data-driven approach, while regressing out the group-wise effects of age, gender and VPA levels. Sixteen networks were identified by independent component analysis (ICA). Each network mask was thresholded (z > 4.00; p < 0.001), and used to compare group-wise FC differences between baseline, intravenous and oral VPA treatment states between GGE and CTL groups. At baseline, FC was increased in most cortical networks of the GGE group but decreased in the thalamic network. After intravenous acute VPA, FC increased in the basal ganglia network and decreased in the parietal network of epileptic baboons to presumed nodes associated with the epileptic network. After oral VPA therapy, FC was decreased in GGE baboons only the orbitofrontal networks connections to the primary somatosensory cortices, reflecting a reversal from baseline comparisons. VPA therapy affects FC in the baboon model of GGE after a single intravenous dose-possibly by facilitating subcortical modulation of the epileptic network and suppressing seizure generation-and after short-term oral VPA treatment, reversing the abnormal baseline increases in FC in the orbitofrontal network. While there is a need to correlate these FC changes with simultaneous EEG recording and seizure outcomes, this study demonstrates the feasibility of evaluating rs-fMRI effects of antiepileptic medications even after short-term exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Ácido Valproico/administração & dosagem , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Papio anubis
13.
Epilepsy Res ; 124: 34-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259066

RESUMO

The epileptic baboon represents a natural model for genetic generalized epilepsy (GGE), closely resembling juvenile myoclonic epilepsy (JME). Due to functional neuroimaging and pathological differences between epileptic (SZ+) and asymptomatic control (CTL) baboons, we expected structural differences in gray matter concentration (GMC) using voxel-based morphometry (VBM). Standard anatomical (MP-RAGE) MRI scans using a 3T Siemens TIM Trio (Siemens, Erlangen, Germany) were available in 107 baboons (67 females; mean age 16±6years) with documented clinical histories and scalp-electroencephalography (EEG) results. For neuroimaging, baboons were anesthetized with isoflurane 1% (1-1.5 MAC) and paralyzed with vecuronium (0.1-0.3mg/kg). Data processing and analysis were performed using FSL's VBM toolbox. GMC was compared between CTL and SZ+ baboons, epileptic baboons with interictal epileptic discharges on scalp EEG (SZ+/IED+), asymptomatic baboons with abnormal EEGs (SZ-/IED+), and IED+ baboons with (IED+/PS+) and without (IED+/PS-) photosensitivity, and the subgroups amongst themselves. Age and gender related changes in gray matter volumes were also included as confound regressors in the VBM analyses of each animal group. Significant increases in GMC were noted in the SZ+/IED+ subgroup compared to the CTL group, including bilaterally in the frontopolar, orbitofrontal and anterolateral temporal cortices, while decreases in GMC were noted in the right more than left primary visual cortices and in the specific nuclei of the thalamus, including reticular, anterior and medial dorsal nuclei. No significant differences were noted otherwise, except that SZ+/IED+ baboons demonstrated increased GMC in the globus pallidae bilaterally compared to the SZ-/IED+ group. Similar to human studies of JME, the epileptic baboons demonstrated GMC decreases in the thalami and occipital cortices, suggesting secondary injury due to chronic epilepsy. Cortical GMC, on the other hand, was increased in the anterior frontal and temporal lobes, also consistent with human JME studies. This VBM study may indicate a combination of developmental and acquired structural changes in the epileptic baboon.


Assuntos
Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Epilepsia Mioclônica Juvenil/diagnóstico por imagem , Papio , Fatores Etários , Animais , Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia Reflexa/diagnóstico por imagem , Epilepsia Reflexa/fisiopatologia , Feminino , Masculino , Epilepsia Mioclônica Juvenil/fisiopatologia , Análise de Regressão , Fatores Sexuais
14.
Comp Med ; 66(3): 241-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298250

RESUMO

Brain MRI scans revealed various occipital horn variants in a pedigreed baboon colony consisting of Papio hamadryas anubis and its hybrids. We retrospectively characterized these variants and evaluated their relationships to epilepsy phenotypes and scalp EEG findings. MRI scans (3D, T1-weighted) from 208 baboons (female, 134 female; male, 74; age [mean ± 1 SD], 16 ± 5 y) were reviewed; 139 (67%) of these animals also underwent scalp EEG previously. Occipital horn variants included elongation (extension of the occipital ventricle behind the mediobasal origin of the calcarine fissure), which affected 23 baboons (11%; 7 bilateral, 9 left, 7 right), and elongation with enlargement (colpocephaly), which occurred in 30 baboons (14%; 7 bilateral, 11 left, 12 right). The incidence of the occipital horn variants did not differ according to age or prenatal or perinatal history. Colpocephaly was associated with craniofacial trauma but not with witnessed seizures. Abnormal scalp EEG findings, including interictal epileptic discharges, did not differ significantly among the occipital horn morphologies. This study is the first radiologic description of occipital horn variants, particularly colpocephaly, in baboons. Whereas colpocephaly is frequently associated with other radiologic and neurologic abnormalities in humans, it is mostly an isolated finding in baboons. Because craniofacial trauma can occur in the setting of seizure-related falls, its increased association with colpocephaly may reflect an increased risk of seizures or of traumatic brain injuries due to seizures. Colpocephaly in baboons needs to be characterized prospectively radiologically, neurologically, histopathologically, and genetically to better understand its etiology and clinical significance.


Assuntos
Encefalopatias/veterinária , Epilepsia/veterinária , Ventrículos Laterais/anormalidades , Imageamento por Ressonância Magnética/veterinária , Doenças dos Macacos/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Eletroencefalografia/veterinária , Epilepsia/diagnóstico por imagem , Feminino , Ventrículos Laterais/diagnóstico por imagem , Masculino , Papio , Fenótipo , Estudos Retrospectivos
15.
Brain Stimul ; 9(3): 406-414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26964725

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has the potential to treat brain disorders by modulating the activity of disease-specific brain networks, yet the rTMS frequencies used are delivered in a binary fashion - excitatory (>1 Hz) and inhibitory (≤1 Hz). OBJECTIVE: To assess the effective connectivity of the motor network at different rTMS stimulation rates during positron-emission tomography (PET) and confirm that not all excitatory rTMS frequencies act on the motor network in the same manner. METHODS: We delivered image-guided, supra-threshold rTMS at 3 Hz, 5 Hz, 10 Hz, 15 Hz and rest (in separate randomized sessions) to the primary motor cortex (M1) of the lightly anesthetized baboon during PET imaging. Each rTMS/PET session was analyzed using normalized cerebral blood flow (CBF) measurements. Path analysis - using structural equation modeling (SEM) - was employed to determine the effective connectivity of the motor network at all rTMS frequencies. Once determined, the final model of the motor network was used to assess any differences in effective connectivity at each rTMS frequency. RESULTS: The exploratory SEM produced a very well fitting final network model (χ(2) = 18.04, df = 21, RMSEA = 0.000, p = 0.647, TLI = 1.12) using seven nodes of the motor network. 5 Hz rTMS produced the strongest path coefficients in four of the seven connections, suggesting that this frequency is the optimal rTMS frequency for stimulation the motor network (as a whole); however, the premotor cerebellum connection was optimally stimulated at 10 Hz rTMS and the supplementary motor area caudate connection was optimally driven at 15 Hz rTMS. CONCLUSION(S): We have demonstrated that 1) 5 Hz rTMS revealed the strongest path coefficients (i.e. causal influence) on the nodes of the motor network, 2) stimulation at "excitatory" rTMS frequencies did not produce increased CBF in all nodes of the motor network, 3) specific rTMS frequencies may be used to target specific none-to-node interactions in the stimulated brain network, and 4) more research needs to be performed to determine the optimum frequency for each brain circuit and/or node.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Cerebelo/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Masculino , Papio , Tomografia por Emissão de Pósitrons/métodos , Distribuição Aleatória
16.
Brain Struct Funct ; 221(4): 2023-33, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25749860

RESUMO

The baboon provides a model of photosensitive, generalized epilepsy. This study compares cerebral blood flow responses during intermittent light stimulation (ILS) between photosensitive (PS) and healthy control (CTL) baboons using H 2 (15) O-PET. We examined effective connectivity associated with visual stimulation in both groups using structural equation modeling (SEM). Eight PS and six CTL baboons, matched for age, gender and weight, were classified on the basis of scalp EEG findings performed during the neuroimaging studies. Five H 2 (15) O-PET studies were acquired alternating between resting and activation (ILS at 25 Hz) scans. PET images were acquired in 3D mode and co-registered with MRI. SEM demonstrated differences in neural connectivity between PS and CTL groups during ILS that were not previously identified using traditional activation analyses. First-level pathways consisted of similar posterior-to-anterior projections in both groups. While second-level pathways were mainly lateralized to the left hemisphere in the CTL group, they consisted of bilateral anterior-to-posterior projections in the PS baboons. Third- and fourth-level pathways were only evident in PS baboons. This is the first functional neuroimaging study used to model the photoparoxysmal response (PPR) using a primate model of photosensitive, generalized epilepsy. Evidence of increased interhemispheric connectivity and bidirectional feedback loops in the PS baboons represents electrophysiological synchronization associated with the generation of epileptic discharges. PS baboons demonstrated decreased model stability compared to controls, which may be attributed to greater variability in the driving response or PPRs, or to the influence of regions not included in the model.


Assuntos
Epilepsia Generalizada/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Córtex Visual/fisiologia , Córtex Visual/fisiopatologia , Vias Visuais/fisiologia , Vias Visuais/fisiopatologia , Animais , Córtex Cerebral/fisiologia , Córtex Cerebral/fisiopatologia , Eletroencefalografia , Feminino , Imageamento por Ressonância Magnética , Masculino , Papio anubis , Papio hamadryas , Estimulação Luminosa , Tomografia por Emissão de Pósitrons , Processamento de Sinais Assistido por Computador
17.
J Neural Eng ; 12(4): 046014, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26052136

RESUMO

OBJECTIVE: Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. APPROACH: Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject's cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. MAIN RESULTS: This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. SIGNIFICANCE: These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia , Estimulação Magnética Transcraniana/métodos , Potenciais de Ação/efeitos da radiação , Animais , Simulação por Computador , Campos Eletromagnéticos , Potencial Evocado Motor/fisiologia , Potencial Evocado Motor/efeitos da radiação , Humanos , Masculino , Córtex Motor/efeitos da radiação , Neurônios/efeitos da radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
18.
J Biomed Opt ; 9(3): 624-31, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15189102

RESUMO

An in-depth characterization of the optical properties of bovine retinal and retinal pigment epithelium-choroidal tissues has been performed. The indices of refraction of these ocular tissues were determined by applying Brewster's law. The inverse adding doubling method based on the diffusion approximation and radiative transport theory is applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to calculate the optical absorption, scattering, and scattering anisotropy coefficients of the bovine retinal and retinal pigment epithelium-choroidal tissues. The values of the optical properties obtained from the inverse adding doubling method are compared with those generated by the Monte Carlo simulation technique. Optical polarization measurements are also performed on bovine retinal tissues. Our studies show that both retina and retinal pigment epithelium-choroid possess strong polarization characteristics.


Assuntos
Corioide/química , Modelos Biológicos , Modelos Químicos , Epitélio Pigmentado Ocular/química , Refratometria/métodos , Retina/química , Animais , Anisotropia , Bovinos , Simulação por Computador , Técnicas In Vitro , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
19.
Cambios rev. méd ; 18(1): 6-10, 28/06/2019. tab
Artigo em Espanhol | LILACS | ID: biblio-1015019

RESUMO

INTRODUCCIÓN. El cáncer de mama resulta una de las neoplasias malignas más frecuente en las mujeres y se asocia con una alta morbilidad y mortalidad a nivel mundial. OBJETIVO. Caracterizar el manejo quirúrgico del cáncer de mama. MATERIALES Y MÉTODOS. Se desarrolló un estudio con enfoque mixto, descriptivo transversal, con una muestra de 80 pacientes. Criterios de inclusión; intervenidas quirúrgicamente mediante mastectomía lateral debido a un diagnóstico de cáncer de mamas. En la Unidad Oncológica de la Sociedad Oncológica de Lucha Contra el Cáncer, Chimborazo, durante el período 2015-2017. Se realizó la revisión de Historias Clínicas Únicas que permitió recopilar los datos mediante la respectiva ficha. Se analizó los datos en el programa Microsoft Excel. RESULTADOS. El 63,75 % (51;80) fue de etnia mestiza y aquellas con edades superiores a 50 años 56,23% (45;80). No existió diferencias importantes entre las prácticas conservadoras con respecto a radicales. La mayoría de los diagnósticos se realizaron en el estadío III, de lateralidad izquierda 63,75% (51;80) y con receptores hormonales luminal A. CONCLUSIÓN. El tratamiento adyuvante resultó el que más se aplicó a las afectadas, no reportándose casos de recurrencia o de progresión de la enfermedad.


INTRODUCTION. Breast cancer is one of the most common malignancies in women and is associated with high morbidity and mortality worldwide. OBJECTIVE. Characterize the surgical management of breast cancer. MATERIALS AND METHODS. A study with a mixed, descriptive, cross-sectional approach was developed with a sample of 80 patients. Inclusion criteria; underwent surgery by lateral mastectomy due to a diagnosis of breast cancer. In the Oncology Unit of the Oncology Society for the Fight Against Cancer, Chimborazo, during the period 2015-2017. The review of Unique Clinical Histories was carried out, which allowed data to be collected through the respective file. The data was analyzed in the Microsoft Excel program. RESULTS 63,75% (51; 80) were of mixed race ethnicity and those with ages over 50 years old 56,23% (45; 80). There were no significant differences between conservative practices with respect to radicals. The majority of diagnoses were made in stage III, with 63,75% left laterality (51; 80) and with luminal hormone receptors A. CONCLUSION. The adjuvant treatment was the one that was most applied to those affected, with no reports of recurrence or disease progression.


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Mulheres , Neoplasias da Mama , Prevenção de Doenças , Tratamento Conservador , Cuidados para Prolongar a Vida , Mastectomia , Morbidade , Mortalidade , Metástase Neoplásica
20.
Brain Stimul ; 6(5): 777-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23540281

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) has the potential to treat brain disorders by tonically modulating firing patterns in disease-specific neural circuits. The selection of treatment parameters for clinical repetitive transcranial magnetic stimulation (rTMS) trials has not been rule based, likely contributing to the variability of observed outcomes. OBJECTIVE: To utilize our newly developed baboon (Papio hamadryas anubis) model of rTMS during position-emission tomography (PET) to quantify the brain's rate-response functions in the motor system during rTMS. METHODS: We delivered image-guided, suprathreshold rTMS at 3 Hz, 5 Hz, 10 Hz, 15 Hz and rest (in separate randomized sessions) to the primary motor cortex (M1) of the lightly anesthetized baboon during PET imaging; we also administered a (reversible) paralytic to eliminate any somatosensory feedback due to rTMS-induced muscle contractions. Each rTMS/PET session was analyzed using normalized cerebral blood flow (CBF) measurements; statistical parametric images and the resulting areas of significance underwent post-hoc analysis to determine any rate-specific rTMS effects throughout the motor network. RESULTS: The motor system's rate-response curves were unimodal and system wide--with all nodes in the network showing highly similar rate response functions--and an optimal network stimulation frequency of 5 Hz. CONCLUSION(S): These findings suggest that non-invasive brain stimulation may be more efficiently delivered at (system-specific) optimal frequencies throughout the targeted network and that functional imaging in non-human primates is a promising strategy for identifying the optimal treatment parameters for TMS clinical trials in specific brain regions and/or networks.


Assuntos
Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Tomografia por Emissão de Pósitrons , Estimulação Magnética Transcraniana , Animais , Circulação Cerebrovascular/fisiologia , Córtex Motor/irrigação sanguínea , Papio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA