Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Semin Cancer Biol ; 81: 119-131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340646

RESUMO

The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.


Assuntos
Neoplasias , Poliploidia , Aneuploidia , Senescência Celular/genética , Redes Reguladoras de Genes , Humanos , Neoplasias/genética
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834647

RESUMO

In our recent work, we observed that triple-negative breast cancer MDA-MB-231 cells respond to doxorubicin (DOX) via "mitotic slippage" (MS), discarding cytosolic damaged DNA during the process that provides their resistance to this genotoxic treatment. We also noted two populations of polyploid giant cells: those budding surviving offspring, versus those reaching huge ploidy by repeated MS and persisting for several weeks. Their separate roles in the recovery from treatment remained unclear. The current study was devoted to characterising the origin and relationship of these two sub-populations in the context of MS. MS was hallmarked by the emergence of nuclear YAP1/OCT4A/MOS/EMI2-positivity featuring a soma-germ transition to the meiotic-metaphase-arrested "maternal germ cell". In silico, the link between modules identified in the inflammatory innate immune response to cytosolic DNA and the reproductive module of female pregnancy (upregulating placenta developmental genes) was observed in polyploid giant cells. Asymmetry of the two subnuclei types, one repairing DNA and releasing buds enriched by CDC42/ACTIN/TUBULIN and the other persisting and degrading DNA in a polyploid giant cell, was revealed. We propose that when arrested in MS, a "maternal cancer germ cell" may be parthenogenetically stimulated by the placental proto-oncogene parathyroid-hormone-like-hormone, increasing calcium, thus creating a "female pregnancy-like" system within a single polyploid giant cancer cell.


Assuntos
Neoplasias , Placenta , Feminino , Gravidez , Humanos , Células Gigantes , Poliploidia , DNA , Hormônios
3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511419

RESUMO

The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.


Assuntos
Neoplasias , Testículo , Gravidez , Animais , Humanos , Masculino , Feminino , Testículo/metabolismo , Placenta , Espermatogênese/genética , Reprodução , Neoplasias/genética , Neoplasias/metabolismo , Mamíferos , Poliploidia , Fertilidade/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769000

RESUMO

Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.


Assuntos
Núcleo Celular , Genoma , Núcleo Celular/metabolismo , Diferenciação Celular/genética
5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499258

RESUMO

The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.


Assuntos
Duplicação Gênica , Neoplasias , Animais , Humanos , Genoma de Planta , Proteoma/genética , Evolução Molecular , Poliploidia , Transcriptoma , Neoplasias/genética , Mamíferos/genética
6.
Biophys J ; 120(4): 711-724, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33453273

RESUMO

Finding out how cells prepare for fate change during differentiation commitment was our task. To address whether the constitutive pericentromere-associated domains (PADs) may be involved, we used a model system with known transcriptome data, MCF-7 breast cancer cells treated with the ErbB3 ligand heregulin (HRG), which induces differentiation and is used in the therapy of cancer. PAD-repressive heterochromatin (H3K9me3), centromere-associated-protein-specific, and active euchromatin (H3K4me3) antibodies, real-time PCR, acridine orange DNA structural test (AOT), and microscopic image analysis were applied. We found a two-step DNA unfolding after 15-20 and 60 min of HRG treatment, respectively. This behavior was consistent with biphasic activation of the early response genes (c-fos - fosL1/myc) and the timing of two transcriptome avalanches reported in the literature. In control, the average number of PADs negatively correlated with their size by scale-free distribution, and centromere clustering in turn correlated with PAD size, both indicating that PADs may create and modulate a suprachromosomal network by fusing and splitting a constant proportion of the constitutive heterochromatin. By 15 min of HRG treatment, the bursting unraveling of PADs from the nucleolus boundary occurred, coinciding with the first step of H3K4me3 chromatin unfolding, confirmed by AOT. The second step after 60 min of HRG treatment was associated with transcription of long noncoding RNA from PADs and peaking of fosL1/c-myc response. We hypothesize that the bursting of PAD clusters under a critical silencing threshold pushes the first transcription avalanche, whereas the destruction of the PAD network enables genome rewiring needed for differentiation repatterning, mediated by early response bivalent genes.


Assuntos
Neoplasias da Mama , Neuregulina-1 , Neoplasias da Mama/genética , Centrômero , Heterocromatina , Humanos
7.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846959

RESUMO

The induction of senescence/polyploidization and their role in cancer recurrence is still a poorly explored issue. We showed that MDA-MB-231 and MCF-7 breast cancer cells underwent reversible senescence/polyploidization upon pulse treatment with doxorubicin (dox). Subsequently, senescent/polyploid cells produced progeny (escapers) that possessed the same amount of DNA as parental cells. In a dox-induced senescence/polyploidization state, the accumulation of autophagy protein markers, such as LC3B II and p62/SQSTM1, was observed. However, the senescent cells were characterized by a very low rate of new autophagosome formation and degradation, estimated by autophagic index. In contrast to senescent cells, escapers had a substantially increased autophagic index and transcription factor EB activation, but a decreased level of an autophagy inhibitor, Rubicon, and autophagic vesicles with non-degraded cargo. These results strongly suggested that autophagy in escapers was improved, especially in MDA-MB-231 cells. The escapers of both cell lines were also susceptible to dox-induced senescence. However, MDA-MB-231 cells which escaped from senescence were characterized by a lower number of γH2AX foci and a different pattern of interleukin synthesis than senescent cells. Thus, our studies showed that breast cancer cells can undergo senescence uncoupled from autophagy status, but autophagic flux resumption may be indispensable in cancer cell escape from senescence/polyploidy.


Assuntos
Autofagia/fisiologia , Neoplasias da Mama/patologia , Senescência Celular/efeitos dos fármacos , Poliploidia , Evasão Tumoral , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Senescência Celular/genética , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Transporte Proteico/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos
8.
Int J Mol Sci ; 21(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316332

RESUMO

Mitotic slippage (MS), the incomplete mitosis that results in a doubled genome in interphase, is a typical response of TP53-mutant tumors resistant to genotoxic therapy. These polyploidized cells display premature senescence and sort the damaged DNA into the cytoplasm. In this study, we explored MS in the MDA-MB-231 cell line treated with doxorubicin (DOX). We found selective release into the cytoplasm of telomere fragments enriched in telomerase reverse transcriptase (hTERT), telomere capping protein TRF2, and DNA double-strand breaks marked by γH2AX, in association with ubiquitin-binding protein SQSTM1/p62. This occurs along with the alternative lengthening of telomeres (ALT) and DNA repair by homologous recombination (HR) in the nuclear promyelocytic leukemia (PML) bodies. The cells in repeated MS cycles activate meiotic genes and display holocentric chromosomes characteristic for inverted meiosis (IM). These giant cells acquire an amoeboid phenotype and finally bud the depolyploidized progeny, restarting the mitotic cycling. We suggest the reversible conversion of the telomerase-driven telomere maintenance into ALT coupled with IM at the sub-telomere breakage sites introduced by meiotic nuclease SPO11. All three MS mechanisms converging at telomeres recapitulate the amoeba-like agamic life-cycle, decreasing the mutagenic load and enabling the recovery of recombined, reduced progeny for return into the mitotic cycle.


Assuntos
DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Telômero/metabolismo , Antibióticos Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo de DNA por Recombinação , Proteína Sequestossoma-1/metabolismo , Telomerase/metabolismo , Encurtamento do Telômero , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
9.
Cells ; 11(5)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269502

RESUMO

Here, we review the role of the circadian clock (CC) in the resistance of cancer cells to genotoxic treatments in relation to whole-genome duplication (WGD) and telomere-length regulation. The CC drives the normal cell cycle, tissue differentiation, and reciprocally regulates telomere elongation. However, it is deregulated in embryonic stem cells (ESCs), the early embryo, and cancer. Here, we review the DNA damage response of cancer cells and a similar impact on the cell cycle to that found in ESCs­overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, coupling telomere erosion to accelerated cell senescence, and favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Polyploidy decelerates the CC. We report an intriguing positive correlation between cancer WGD and the deregulation of the CC assessed by bioinformatics on 11 primary cancer datasets (rho = 0.83; p < 0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by ALT-recombination, and return their depolyploidised offspring to telomerase-dependent regulation. By reversing this polyploidy and the CC "death loop", the mitotic cycle and Hayflick limit count are thus again renewed. Our review and proposed mechanism support a life-cycle concept of cancer and highlight the perspective of cancer treatment by differentiation.


Assuntos
Relógios Circadianos , Neoplasias , Relógios Circadianos/genética , Dano ao DNA/genética , Humanos , Mitose/genética , Neoplasias/genética , Poliploidia , Telômero
10.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36145274

RESUMO

Bacteriophage-derived dsRNA, known as Larifan, is a nationally well-known broad-spectrum antiviral medication. This study aimed to ascertain the antiviral activity of Larifan against the novel SARS-CoV-2 virus. Larifan's effect against SARS-CoV-2 in vitro was measured in human lung adenocarcinoma (Calu3) and primary human small airway epithelial cells (HSAEC), and in vivo in the SARS-CoV-2 infection model in golden Syrian hamsters. Larifan inhibited SARS-CoV-2 replication both in vitro and in vivo. Viral RNA copy numbers and titer of infectious virus in the supernatant of Calu3 cells dropped significantly: p = 0.0296 and p = 0.0286, respectively. A reduction in viral RNA copy number was also observed in HSAEC, especially when Larifan was added before infection (p = 0.0218). Larifan markedly reduced virus numbers in infected hamsters' lungs post-infection, with a more pronounced effect after intranasal administration (p = 0.0032). The administration of Larifan also reduced the amount of infections virus titer in the lungs (p = 0.0039). Improvements in the infection-induced pathological lesion severity in the lungs of animals treated with Larifan were also demonstrated. The inhibition of SARS-CoV-2 replication in vitro and the reduction in the viral load in the lungs of infected hamsters treated with Larifan alongside the improved lung histopathology suggests a potential use of Larifan in also controlling the COVID-19 disease in humans.

11.
Cell Biol Int ; 35(7): 687-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21250945

RESUMO

'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.


Assuntos
Autofagia , Cromatina/metabolismo , Fragmentação do DNA , Replicação do DNA , Neoplasias/genética , Ploidias , Proteína Supressora de Tumor p53/deficiência , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Cromatina/genética , Montagem e Desmontagem da Cromatina , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Etoposídeo/farmacologia , Raios gama/efeitos adversos , Genoma Humano , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mitose , Proteína Homeobox Nanog , Neoplasias/metabolismo , Neoplasias/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Paclitaxel/farmacologia , Proteína Supressora de Tumor p53/genética
12.
Exp Cell Res ; 316(13): 2099-112, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20457152

RESUMO

We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.


Assuntos
Proteínas de Homeodomínio/genética , Neoplasias/radioterapia , Fator 3 de Transcrição de Octâmero/genética , Poliploidia , Fatores de Transcrição SOXB1/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima , Western Blotting , Proliferação de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Mutação/genética , Proteína Homeobox Nanog , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo
13.
Cells ; 10(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201566

RESUMO

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.


Assuntos
Heterocromatina/metabolismo , Modelos Biológicos , Actomiosina/metabolismo , Animais , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Galinhas , Período de Replicação do DNA , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos/genética , Ratos
14.
Exp Cell Res ; 315(15): 2593-603, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19463812

RESUMO

Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos/efeitos da radiação , Raios gama , Neoplasias , Poliploidia , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral/fisiologia , Linhagem Celular Tumoral/efeitos da radiação , Centrômero/metabolismo , Humanos , Hibridização in Situ Fluorescente , Cinetocoros/metabolismo , Meiose/fisiologia , Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fuso Acromático/metabolismo
15.
Genes (Basel) ; 10(2)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691027

RESUMO

Aneuploidy should compromise cellular proliferation but paradoxically favours tumour progression and poor prognosis. Here, we consider this paradox in terms of our most recent observations of chemo/radio-resistant cells undergoing reversible polyploidy. The latter perform the segregation of two parental groups of end-to-end linked dyads by pseudo-mitosis creating tetraploid cells through a dysfunctional spindle. This is followed by autokaryogamy and a homologous pairing preceding a bi-looped endo-prophase. The associated RAD51 and DMC1/γ-H2AX double-strand break repair foci are tandemly situated on the AURKB/REC8/kinetochore doublets along replicated chromosome loops, indicative of recombination events. MOS-associated REC8-positive peri-nucleolar centromere cluster organises a monopolar spindle. The process is completed by reduction divisions (bi-polar or by radial cytotomy including pedogamic exchanges) and by the release of secondary cells and/or the formation of an embryoid. Together this process preserves genomic integrity and chromosome pairing, while tolerating aneuploidy by by-passing the mitotic spindle checkpoint. Concurrently, it reduces the chromosome number and facilitates recombination that decreases the mutation load of aneuploidy and lethality in the chemo-resistant tumour cells. This cancer life-cycle has parallels both within the cycling polyploidy of the asexual life cycles of ancient unicellular protists and cleavage embryos of early multicellulars, supporting the atavistic theory of cancer.


Assuntos
Aneuploidia , Evolução Molecular , Neoplasias/genética , Instabilidade Genômica , Células HeLa , Humanos , Cinetocoros/metabolismo , Mitose , Recombinação Genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
16.
Genes (Basel) ; 10(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331093

RESUMO

Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.


Assuntos
Cromossomos Humanos X , Cromossomos Humanos Y , Cariótipo , Neoplasias/genética , Células-Tronco Neoplásicas , Triploidia , Células Germinativas , Células HeLa , Humanos , Masculino , Meiose , Modelos Genéticos , Neoplasias/patologia , Fuso Acromático , Células Tumorais Cultivadas
17.
Cell Cycle ; 17(3): 362-366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29372665

RESUMO

The epigenetic mechanisms underlying chemoresistance in cancer cells resulting from drug-induced reversible senescence are poorly understood. Chemoresistant ESC-like embryonal carcinoma PA1 cells treated with etoposide (ETO) were previously found to undergo prolonged G2 arrest with transient p53-dependent upregulation of opposing fate regulators, p21CIP1 (senescence) and OCT4A (self-renewal). Here we report on the analysis of the DNA methylation state of the distal enhancer (DE) and proximal enhancer (PE) of the Oct4A gene during this dual response. When compared to non-treated controls the methylation level increased from 1.3% to 12.5% and from 3% to 19.4%, in the DE and PE respectively. It included CpG and non-CpG methylation, which was not chaotic but presented two patterns in each enhancer. Discorrelating with methylation of enhancers, the transcription of Oct4A increased, however, a strong expression of the splicing form Oct4B was also induced, along with down-regulation of the Oct4A partners of in the pluripotency/self-renewal network Sox2 and Lin28. WB demonstrated disjoining of the OCT4A protein from the chromatin-bound fraction. In survival clones, methylation of the DE was considerably erased, while some remnant of methylation of the PE was still observed. The alternative splicing for Oct4B was reduced, Oct4A level insignificantly decreased, while the expression of Sox2 and Lin28 recovered, all three became proportionally above the control. These findings indicate the involvement of the transient patterned methylation of the Oct4A enhancers and alternative splicing in the adaptive regulation of cell fate choice during the p53-dependant dual state of reversible senescence in ESC-like cancer stem cells.


Assuntos
Processamento Alternativo/genética , Senescência Celular/efeitos dos fármacos , Metilação de DNA/genética , Células-Tronco de Carcinoma Embrionário/metabolismo , Elementos Facilitadores Genéticos/genética , Etoposídeo/farmacologia , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Processamento Alternativo/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Nucleus ; 9(1): 171-181, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363398

RESUMO

The chromatin observed by conventional electron microscopy under the nuclear envelope constitutes a single layer of dense 30-35 nm granules, while ∼30 nm fibrils laterally attached to them, form large patches of lamin-associated domains (LADs). This particular surface "epichromatin" can be discerned by specific (H2A+H2B+DNA) conformational antibody at the inner nuclear envelope and around mitotic chromosomes. In order to differentiate the DNA conformation of the peripheral chromatin we applied an Acridine orange (AO) DNA structural test involving RNAse treatment and the addition of AO after acid pre-treatment. MCF-7 cells treated in this way revealed yellow/red patches of LADs attached to a thin green nuclear rim and with mitotic chromosomes outlined in green, topologically corresponding to epichromatin epitope staining by immunofluorescence. Differentially from LADs, the epichromatin was unable to provide metachromatic staining by AO, unless thermally denatured at 94oC. DNA enrichment in GC stretches has been recently reported for immunoprecipitated ∼ 1Kb epichromatin domains. Together these data suggest that certain epichromatin segments assume the relatively hydrophobic DNA A-conformation at the nuclear envelope and surface of mitotic chromosomes, preventing AO side dimerisation.  We hypothesize that epichromatin domains form nucleosome superbeads. Hydrophobic interactions stack these superbeads and align them at the nuclear envelope, while repulsing the hydrophilic LADs. The hydrophobicity of epichromatin explains its location at the surface of mitotic chromosomes and its function in mediating chromosome attachment to the restituting nuclear envelope during telophase.


Assuntos
Laranja de Acridina/química , Cromatina/química , DNA/química , Conformação de Ácido Nucleico , Coloração e Rotulagem , Cromatina/metabolismo , Humanos , Células MCF-7
19.
Nucleus ; 8(2): 205-221, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28068183

RESUMO

The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2-5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.


Assuntos
Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Heterocromatina/efeitos dos fármacos , Heterocromatina/metabolismo , Mutagênicos/toxicidade , Autofagia/efeitos dos fármacos , Autofagia/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Nucléolo Celular/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dano ao DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Etoposídeo/toxicidade , Humanos , Retroelementos/efeitos dos fármacos , Retroelementos/genética
20.
Oncotarget ; 7(46): 75235-75260, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27655693

RESUMO

The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer.


Assuntos
Epistasia Genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Poliploidia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Proteínas de Transporte , Feminino , Dosagem de Genes , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Metabolômica , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Placenta/metabolismo , Gravidez , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estresse Fisiológico , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA