Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 323: 116249, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137456

RESUMO

Current political focus on promoting circular economy in the European Union drives great interest in developing and using more biobased fertilizers (BBFs, most often waste or residue-derived). Many studies have been published on environmental emissions, including ammonia (NH3) volatilization from manures, but there have only been a few such studies on BBFs. Ammonia volatilization from agriculture poses a risk to the environment and human health, causing pollution in natural ecosystems when deposited and formation of fine particulate matter (PMx). Furthermore, NH3 volatilization results in removal of plant-available N from agricultural systems, constituting an economic loss for farmers. The aim of this laboratory study was to determine the potential NH3 volatilization from 39 different BBFs commercially available on the European market. In addition, this study aimed to investigate the effect of incorporation, application rate, soil type, and soil moisture content on potential NH3 volatilization in order to derive suggestions for the optimal field application conditions. Results showed a great variation between BBFs in potential NH3 volatilization, both in terms of their temporal pattern of volatilization and amount of NH3 volatilized. The potential NH3 volatilization varied from 0% of applied total N (olive oil compost) to 64% of applied total N (manure and crop digestate) during a 27- or 44-day incubation period. Characteristics of BBFs (pH, NH4+-N, NO3--N, DM, C:N) and their interaction with time could explain 89% of the variation in accumulated potential NH3 volatilization. Incorporation of BBFs into an acidic sandy soil effectively reduced potential NH3 volatilization by 37%-96% compared to surface application of BBFs. Potential NH3 volatilization was not significantly affected by differences in application rate or soil moisture content, but varied between five different soils (with different clay and organic matter content), with the highest NH3 volatilization potential from the acidic sandy soil.


Assuntos
Amônia , Fertilizantes , Agricultura/métodos , Amônia/análise , Argila , Ecossistema , Fertilizantes/análise , Humanos , Esterco , Nitrogênio/análise , Azeite de Oliva , Material Particulado , Solo
2.
Glob Chang Biol ; 24(3): 1291-1307, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29245185

RESUMO

Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.


Assuntos
Mudança Climática , Produtos Agrícolas/fisiologia , Modelos Biológicos , Incerteza , Regiões Árticas , Produtos Agrícolas/crescimento & desenvolvimento , Finlândia , Previsões , Região do Mediterrâneo , Espanha , Fatores de Tempo
3.
J Environ Manage ; 169: 293-302, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773433

RESUMO

The use of digestate in agriculture is an efficient way to recycle materials and to decrease the use of mineral fertilizers. The agronomic characteristics of the digestates can promote plant growth and soil properties after digestate fertilization but also harmful effects can arise due to digestate quality, e.g. pH, organic matter and heavy metal content. The objective of this study was to evaluate the differences and similarities in agronomic characteristics and the value of five urban waste digestates from different biogas plants treating either food waste, organic fraction of organic solid waste or a mixture of waste-activated sludge and vegetable waste. The digestate agronomic characteristics were studied with chemical analyses and the availability of nutrients was also assessed with growth experiments and soil mineralization tests. All studied urban digestates produced 5-30% higher ryegrass yields compared to a control mineral fertilizer with a similar inorganic nitrogen concentration, while the feedstock source affected the agronomic value. Food waste and organic fraction of municipal solid waste digestates were characterized by high agronomic value due to the availability of nutrients and low heavy metal load. Waste-activated sludge as part of the feedstock mixture, however, increased the heavy metal content and reduced nitrogen availability to the plant, thus reducing the fertilizer value of the digestate.


Assuntos
Agricultura/métodos , Gerenciamento de Resíduos/métodos , Biocombustíveis , Reatores Biológicos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Metais Pesados/análise , Nitrogênio/análise , Esgotos/química , Solo , Poluentes do Solo/análise , Resíduos Sólidos/análise
4.
Front Plant Sci ; 13: 952910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237499

RESUMO

Crop diversification in spatial and temporal patterns can optimize the synchronization of nutrients plant demand and availability in soils, as plant diversity and soil microbial communities are the main drivers of biogeochemical C and nutrient cycling. The introduction of multi-cropping in organic vegetable production can represent a key strategy to ensure efficient complementation mediated by soil microbiota, including beneficial mycorrhizal fungi. This study shows the effect of the introduction of multi-cropping in five European organic vegetable systems (South-West: Italy; North-West: Denmark and Belgium; North-East: Finland and Latvia) on: (i) soil physicochemical parameters; (ii) soil microbial biomass stoichiometry; (iii) crop root mycorrhization; (iv) bacterial and fungal diversity and composition in crop rhizosphere; (v) relative abundance of selected fungal pathogens species. In each site, three cropping systems were considered: (1) crop 1-monocropping; (2) crop 2-monocropping; (3) crop 1-crop 2-intercropping or strip cropping. Results showed that, just before harvest, multi-cropping can increase soil microbial biomass amount and shape microbial community toward a predominance of some bacteria or fungi phyla, in the function of soil nutrient availability. We mainly observed a selection effect of crop type on rhizosphere microbiota. Particularly, Bacteroidetes and Mortierellomycota relative abundances in rhizosphere soil resulted in suitable ecological indicators of the positive effect of plant diversity in field, the first ones attesting an improved C and P cycles in soil and the second ones a reduced soil pathogens' pressure. Plant diversity also increased the root mycorrhizal colonization between the intercropped crops that, when properly selected, can also reduce the relative abundance of potential soil-borne pathogens, with a positive effect on crop productivity in long term.

5.
Ambio ; 44(6): 544-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25663562

RESUMO

The Finnish agri-environmental program (AEP) has been in operation for 20 years with >90 % farmer commitment. This study aimed to establish whether reduced nitrogen (N) and phosphorus (P) use has impacted spring cereal yields and quality based on comprehensive follow-up studies and long-term experiments. We found that the gap between genetic yield potential and attained yield has increased after the AEP was imposed. However, many contemporary changes in agricultural practices, driven by changes in prices and farm subsidies, also including the AEP, were likely reasons, together with reduced N, but not phosphorus use. Such overall changes in crop management coincided with stagnation or decline in yields and adverse changes in quality, but yield-removed N increased and residual N decreased. Further studies are needed to assess whether all the changes are environmentally, economically, and socially sustainable, and acceptable, in the long run. The concept of sustainable intensification is worth considering as a means to develop northern European agricultural systems to combine environmental benefits with productivity.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Nitrogênio/análise , Fósforo/análise
6.
Ambio ; 44 Suppl 2: S286-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681985

RESUMO

Conversion of dissolved P by ferric sulfate into a particulate form sparingly available to algae was studied in 15 ditches in Finland using stand-alone dispensers for ferric sulfate administration. Ferric sulfate typically converted 60-70 % of dissolved P into iron-associated form, a process which required 250-650 kg per kg dissolved P. Mean cost was 160 EUR per kg P converted (range 20-400 EUR kg(-1)). The costs were lowest at sites characterized by high dissolved P concentrations and small catchment area. At best, the treatment was efficient and cost-effective, but to limit the costs and the risks, ferric sulfate dispensers should only be installed in small critical source areas.


Assuntos
Compostos Férricos/análise , Fósforo/análise , Monitoramento Ambiental , Fertilizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA