Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cardiovasc Ultrasound ; 21(1): 21, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098064

RESUMO

BACKGROUND: Physical activity contributes to changes in cardiac morphology, which are known as "athlete's heart". Therefore, these modifications can be characterized using different imaging modalities such as echocardiography, including Doppler (flow Doppler and Doppler myocardial imaging) and speckle-tracking, along with cardiac magnetic resonance, and cardiac computed tomography. MAIN TEXT: Echocardiography is the most common method for assessing cardiac structure and function in athletes due to its availability, repeatability, versatility, and low cost. It allows the measurement of parameters like left ventricular wall thickness, cavity dimensions, and mass. Left ventricular myocardial strain can be measured by tissue Doppler (using the pulse wave Doppler principle) or speckle tracking echocardiography (using the two-dimensional grayscale B-mode images), which provide information on the deformation of the myocardium. Cardiac magnetic resonance provides a comprehensive evaluation of cardiac morphology and function with superior accuracy compared to echocardiography. With the addition of contrast agents, myocardial state can be characterized. Thus, it is particularly effective in differentiating an athlete's heart from pathological conditions, however, is less accessible and more expensive compared to other techniques. Coronary computed tomography is used to assess coronary artery anatomy and identify anomalies or diseases, but its use is limited due to radiation exposure and cost, making it less suitable for young athletes. A novel approach, hemodynamic forces analysis, uses feature tracking to quantify intraventricular pressure gradients responsible for blood flow. Hemodynamic forces analysis has the potential for studying blood flow within the heart and assessing cardiac function. CONCLUSIONS: In conclusion, each diagnostic technique has its own advantages and limitations for assessing cardiac adaptations in athletes. Examining and comparing the cardiac adaptations resulting from physical activity with the structural cardiac changes identified through different diagnostic modalities is a pivotal focus in the field of sports medicine.


Assuntos
Cardiomegalia Induzida por Exercícios , Humanos , Coração/diagnóstico por imagem , Coração/fisiologia , Ecocardiografia , Miocárdio/patologia , Ventrículos do Coração/diagnóstico por imagem , Atletas
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674717

RESUMO

Host-directed therapies are emerging as a promising tool in the curing of difficult-to-treat infections, such as those caused by drug-resistant bacteria. In this study, we aim to test the potential activity of the FDA- and EMA-approved drugs cysteamine and cystamine against Mycobacterium abscessus. In human macrophages (differentiated THP-1 cells), these drugs restricted M. abscessus growth similar to that achieved by amikacin. Here, we use the human ex vivo granuloma-like structures (GLS) model of infection with the M. abscessus rough (MAB-R) and smooth (MAB-S) variants to study the activity of new therapies against M. abscessus. We demonstrate that cysteamine and cystamine show a decrease in the number of total GLSs per well in the MAB-S and MAB-R infected human peripheral blood mononuclear cells (PBMCs). Furthermore, combined administration of cysteamine or cystamine with amikacin resulted in enhanced activity against the two M. abscessus morpho variants compared to treatment with amikacin only. Treatment with cysteamine and cystamine was more effective in reducing GLS size and bacterial load during MAB-S infection compared with MAB-R infection. Moreover, treatment with these two drugs drastically quenched the exuberant proinflammatory response triggered by the MAB-R variant. These findings showing the activity of cysteamine and cystamine against the R and S M. abscessus morphotypes support the use of these drugs as novel host-directed therapies against M. abscessus infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cistamina/farmacologia , Cistamina/uso terapêutico , Leucócitos Mononucleares , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
3.
Int J Med Microbiol ; 311(4): 151506, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906074

RESUMO

Isoniazid (INH) is the cornerstone of the anti-tuberculosis regimens and emergence of Mycobacterium tuberculosis (Mtb) resistant strains is a major threat to our ability to control tuberculosis (TB) at global level. Mutations in the gene coding the catalase KatG confer resistance to high level of INH. In this paper, we describe for the first time a complete deletion of the genomic region containing the katG gene in an Mtb clinical strain isolated in Italy in a patient with HIV infection that previously completed INH preventive therapy. We genotypically characterized the Mtb strain and showed that katG deletion confers high-level resistance to INH (MIC > 25.6 µg/mL). The katG deletion did not impact significantly on Mtb fitness as we did not detect enhanced susceptibility to H2O2 compared to the wild type Mtb strains nor impaired growth in in vitro infection models. These findings highlight the ability of Mtb to acquire resistance to INH while maintaining fitness and pathogenic potential.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Deleção de Genes , Humanos , Peróxido de Hidrogênio , Itália , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética
4.
Int J Med Microbiol ; 309(5): 299-306, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31147175

RESUMO

Interferon-γ inducible protein 10 (IP-10), is a potent chemoattractant that promotes migration of monocytes and activated T-cells to inflammation foci. IP-10 is elevated in serum of patients with chronic hepatitis C virus (HCV) and tuberculosis (TB) infections, although it remains to be determined the contribution of IP-10 in restricting Mycobacterium tuberculosis (Mtb) replication. Here, we investigated the impact of IP-10 on mycobacteria replication using the ex vivo model of human whole-blood (WB) assay. In particular, we compared the levels of IP-10 upon infection with different Mtb clinical strains and species of non-tuberculous mycobacteria (NTM) and evaluated how IP-10 may contain bacterial replication. Interestingly, we observed that the inhibition of the host enzyme dipeptidyl peptidase IV (DPP-IV), which inactivates IP-10 through cleavage of two amino acids at the chemokine N-terminus, restricted mycobacterial persistence in WB, supporting the critical role of full length IP-10 in mediating an anti-Mtb response. Addition of recombinant IP-10 expressed in eukaryotic cells enhanced the anti-mycobacterial activity in WB, although no differences were observed when IP-10 containing different proportions of cleaved and non-cleaved forms of the chemokine were added. Moreover, recombinant IP-10 did not exert a direct anti-mycobacterial effect. Our results underscore the clinical relevance of IP-10 in mycobacteria pathogenesis and support the potential outcomes that may derive by targeting the IP-10/CXCR3 pathway as host directed therapies for the treatment of Mtb or NTM infections.


Assuntos
Células Sanguíneas/microbiologia , Quimiocina CXCL10/imunologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Adulto , Bioensaio , Humanos , Masculino , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Tuberculose/microbiologia , Células Tumorais Cultivadas
5.
Cell Microbiol ; 20(12): e12952, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30192424

RESUMO

PE_PGRSs of Mycobacterium tuberculosis (Mtb) represent a family of complex and peculiar proteins whose role and function remain elusive. In this study, we investigated PE_PGRS3 and PE_PGRS4, two highly homologous PE_PGRSs encoded by two contiguous genes in the Mtb genome. Using a gene-reporter system in Mycobacterium smegmatis (Ms) and transcriptional analysis in Mtb, we show that PE_PGRS3, but not PE_PGRS4, is specifically expressed under low phosphate concentrations. Interestingly, PE_PGRS3, but not PE_PGRS4, has a unique, arginine-rich C-terminal domain of unknown function. Heterologous expression of PE_PGRS3 in Ms was used to demonstrate cellular localisation of the protein on the mycobacterial surface, where it significantly affects net surface charge. Moreover, expression of full-length PE_PGRS3 enhanced adhesion of Ms to murine macrophages and human epithelial cells and improved bacterial persistence in spleen tissue following infection in mice. Expression of the PE_PGRS3 functional deletion mutant lacking the C-terminal domain in Ms did not enhance adhesion to host cells, showing a phenotype similar to the Ms parental strain. Interestingly, enhanced persistence of Ms expressing PE_PGRS3 did not correlate with increased concentrations of inflammatory cytokines. These results point to a critical role for the ≈ 80 amino acids long, arginine-rich C-terminal domain of PE_PGRS3 in tuberculosis pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium smegmatis/genética , Fosfatos/farmacologia , Células A549 , Animais , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Microrganismos Geneticamente Modificados , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Fosfatos/administração & dosagem , Domínios Proteicos , Baço/microbiologia
6.
PLoS One ; 19(7): e0306481, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052620

RESUMO

BACKGROUND: Hemodynamic forces (HDF) analysis has been proposed as a method to quantify intraventricular pressure gradients, however data on its reliability are still scanty. Thus, the aim of this study is to assess the reliability of HDF parameters derived from cardiac magnetic resonance (CMR). METHODS: CMR studies of 25 athletes were analysed by two independent observers and then re-analysed by the same observer one week apart. Intraclass Correlation Coefficient (ICC [95% CI]) and Bland-Altman plots were used to assess association, agreement, and bias of the longitudinal (A-B) HDF, transverse (L-S) HDF, and Impulse Angle. The sample size required to detect a relative change in the HDF parameters was also calculated. RESULTS: In terms of inter-observer variability, there was a good correlation for the A-B and L-S (ICC 0.85 [0.67-0.93] and 0.86 [0.69-0.94]; p<0.001 for both, respectively) and a moderate correlation for the Impulse Angle (ICC 0.73 [0.39-0.87]; p = 0.001). For intra-observer variability, A-B and L-S showed excellent correlation (ICC 0.91 [0.78-0.93] and 0.93 [0.83-0.97]; p<0.001 for both, respectively). Impulse Angle presented good correlation (ICC 0.80 [0.56-0.90]; p<0.001). Frame selection and aortic valve area measurements were the most vulnerable step in terms of reliability of the method. Sample size calculation to detect relative changes ranged from n = 1 to detect a 15% relative change in Impulse Angle to n = 171 for the detection of 10% relative change in A-B HDF. CONCLUSIONS: The results of this study showed a low inter- and intra-observer variability of HDF parameters derived from feature-tracking CMR. This provides the fundamental basis for their use both in research and clinical practice, which could eventually lead to the detection of significant changes at follow-up studies.


Assuntos
Ventrículos do Coração , Hemodinâmica , Variações Dependentes do Observador , Humanos , Masculino , Adulto , Ventrículos do Coração/diagnóstico por imagem , Reprodutibilidade dos Testes , Feminino , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Atletas
7.
Front Microbiol ; 15: 1395815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774507

RESUMO

Introduction: The emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains has underscored the urgent need for novel therapeutic approaches. Carbon-based nanomaterials, such as graphene oxide (GO), have shown potential in anti-TB activities but suffer from significant toxicity issues. Methods: This study explores the anti-TB potential of differently functionalized graphene quantum dots (GQDs) - non-functionalized, L-GQDs, aminated (NH2-GQDs), and carboxylated (COOH-GQDs) - alone and in combination with standard TB drugs (isoniazid, amikacin, and linezolid). Their effects were assessed in both axenic cultures and in vitro infection models. Results: GQDs alone did not demonstrate direct mycobactericidal effects nor trapping activity. However, the combination of NH2-GQDs with amikacin significantly reduced CFUs in in vitro models. NH2-GQDs and COOH-GQDs also enhanced the antimicrobial activity of amikacin in infected macrophages, although L-GQDs and COOH-GQDs alone showed no significant activity. Discussion: The results suggest that specific types of GQDs, particularly NH2-GQDs, can enhance the efficacy of existing anti-TB drugs. These nanoparticles might serve as effective adjuvants in anti-TB therapy by boosting drug performance and reducing bacterial counts in host cells, highlighting their potential as part of advanced drug delivery systems in tuberculosis treatment. Further investigations are needed to better understand their mechanisms and optimize their use in clinical settings.

8.
Front Cardiovasc Med ; 10: 1127320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600059

RESUMO

Background: Cardiovascular diseases contribute to premature mortality globally, resulting in substantial social and economic burdens. The Global Burden of Disease (GBD) Study reported that in 2019 alone, heart attack and strokes accounted for the deaths of 18.6 million individuals. Ischemic heart diseases, including acute myocardial infarction (AMI), accounted for 182 million disability-adjusted life years (DALYs) and it is leading cause of death worldwide. Aim: The aim of this study is to present the burden of AMI in Kazakhstan and describe the outcome of hospitalized patients. Methods: The data of 79,172 people admitted to hospital with ICD-10 diagnosis I21 between 2014 and 2019 was derived from the Unified National Electronic Health System and retrospectively analyzed. Results: The majority of the cohort (53,285, 67%) were men, with an average age of 63 (±12) years, predominantly of Kazakh (38,057, 48%) and Russian (24,583, 31%) ethnicities. Hypertension was the most common comorbidity (61,972, 78%). In males, a sharp increase in incidence is present after 40 years, while for females, the morbidity increases gradually after 55. Throughout the observation period, all-cause mortality rose from 101 to 210 people per million population (PMP). In 2019, AMI account for 169,862 DALYs in Kazakhstan, with a significant proportion (79%) attributed to years of life lost due to premature death (YLDs). Approximately half of disease burden due to AMI (80,794 DALYs) was in age group 55-69 years. Although incidence is higher for men, they have better survival rates than women. In terms of revascularization procedures, coronary artery bypass grafting yielded higher survival rates compared to percutaneous coronary intervention (86.3% and 80.9% respectively) during the 5-year follow-up. Conclusion: This research evaluated the burden and disability-adjusted life years of AMI in Kazakhstan, the largest Central Asian country. The results show that more effective disease management systems and preventive measures at earlier ages are needed.

9.
Antibiotics (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671372

RESUMO

Even though Everolimus has been investigated in a phase II randomized trial as a host-directed therapy (HDT) to treat tuberculosis (TB), an oncological patient treated with Everolimus for a neuroendocrine pancreatic neoplasia developed active TB twice and a non-tuberculous mycobacterial (NTM) infection in a year and a half time span. To investigate this interesting case, we isolated and genotypically characterized the Mycobacterium tuberculosis (Mtb) clinical strain from the patient and tested the effect of Everolimus on its viability in an axenic culture and in a peripheral blood mononuclear cell (PBMCs) infection model. To exclude strain-specific resistance, we tested the activity of Everolimus against Mtb strains of ancient and modern lineages. Furthermore, we investigated the Everolimus effect on ROS production and autophagy modulation during Mtb infection. Everolimus did not have a direct effect on mycobacteria viability and a negligible effect during Mtb infection in host cells, although it stimulated autophagy and ROS production. Despite being a biologically plausible HDT against TB, Everolimus does not exert a direct or indirect activity on Mtb. This case underlines the need for a careful approach to drug repurposing and implementation and the importance of pre-clinical experimental studies.

10.
Microorganisms ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985128

RESUMO

Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA