RESUMO
BACKGROUND: Gastroschisis mortality in sub-Saharan Africa (SSA) remains high at 59-100%. Silo inaccessibility contributes to this disparity. Standard of care (SOC) silos cost $240, while median monthly incomes in SSA are < $200. Our multidisciplinary American and Ugandan team designed and bench-tested a low-cost (LC) silo that costs < $2 and is constructed from locally available materials. Here we describe in vivo LC silo testing. METHODS: A piglet gastroschisis model was achieved by eviscerating intestines through a midline incision. Eight piglets were randomized to LC or SOC silos. Bowel was placed into the LC or SOC silo, maintained for 1-h, and reduced. Procedure times for placement, intestinal reduction, and silo removal were recorded. Tissue injury of the abdominal wall and intestine was assessed. Bacterial and fungal growth on silos was also compared. RESULTS: There were no gross injuries to abdominal wall or intestine in either group or difference in minor bleeding. Times for silo application, bowel reduction, and silo removal between groups were not statistically or clinically different, indicating similar ease of use. Microbiologic analysis revealed growth on all samples, but density was below the standard peritoneal inoculum of 105 CFU/g for both silos. There was no significant difference in bacterial or fungal growth between LC and SOC silos. CONCLUSION: LC silos designed for manufacturing and clinical use in SSA demonstrated similar ease of use, absence of tissue injury, and acceptable microbiology profile, similar to SOC silos. The findings will allow our team to proceed with a pilot study in Uganda.
Assuntos
Parede Abdominal , Gastrosquise , Procedimentos de Cirurgia Plástica , Animais , Parede Abdominal/cirurgia , Gastrosquise/cirurgia , Intestinos/cirurgia , Projetos Piloto , SuínosRESUMO
BACKGROUND: Gastroschisis silos are often unavailable in sub-Saharan Africa (SSA), contributing to high mortality. We describe a collaboration between engineers and surgeons in the United States and Uganda to develop a silo from locally available materials. METHODS: Design criteria included the following: < $5 cost, 5 ± 0.25 cm opening diameter, deformability of the opening construct, ≥ 500 mL volume, ≥ 30 N tensile strength, no statistical difference in the leakage rate between the low-cost silo and preformed silo, ease of manufacturing, and reusability. Pugh scoring matrices were used to assess designs. Materials considered included the following: urine collection bags, intravenous bags, or zipper storage bags for the silo and female condom rings or O-rings for the silo opening construct. Silos were assembled with clothing irons and sewn with thread. Colleagues in Uganda, Malawi, Tanzania, and Kenya investigated material cost and availability. RESULTS: Urine collection bags and female condom rings were chosen as the most accessible materials. Silos were estimated to cost < $1 in SSA. Silos yielded a diameter of 5.01 ± 0.11 cm and a volume of 675 ± 7 mL. The iron + sewn seal, sewn seal, and ironed seal on the silos yielded tensile strengths of 31.1 ± 5.3 N, 30.1 ± 2.9 N, and 14.7 ± 2.4 N, respectively, compared with the seal of the current standard-of-care silo of 41.8 ± 6.1 N. The low-cost silos had comparable leakage rates along the opening and along the seal with the spring-loaded preformed silo. The silos were easily constructed by biomedical engineering students within 15 min. All silos were able to be sterilized by submersion. CONCLUSIONS: A low-cost gastroschisis silo was constructed from materials locally available in SSA. Further in vivo and clinical studies are needed to determine if mortality can be improved with this design.