Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Physiol ; 234(3): 2895-2904, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076728

RESUMO

Gastric cancer is a life-threatening disease; resulting from interaction among genetic, epigenetic, and environmental factors. Aberrant dysregulation and methylation changes in Wnt/ß-catenin signaling downstream elements are a prevalent phenomenon encountered in gastric tumorigenesis. Also, viral infections play a role in gastric cancer development. CTNNBIP1 (ß-catenin interacting protein 1) gene is an antagonist of Wnt signaling which binds to the ß-catenin molecules. The CTNNBIP1 function as tumor suppressor gene or oncogene in different types of cancer is controversial. Moreover, its function and regulatory mechanisms in gastric cancer progression is unknown. In the present study, we examined CTNNBIP1 gene expression, the methylation status of the regulatory region of the gene, and their association with Epstein-Barr virus (EBV), and cytomegalovirus (CMV) and Helicobacter pylori infections in human gastric adenocarcinoma tissues in comparison with their adjacent nontumoral tissues. Our data revealed a significant downregulation of CTNNBIP1 in gastric tumors. Female patients showed lower level of CTNNBIP1 than males (p < 0.05). Also, decreased expression of CTNNBIP1 was markedly associated with well-differentiated tumor grades (p < 0.05). No methylation change was observed between tumoral and nontumoral tissues. Additionally, CTNNBIP1 down regulation was significantly associated with CMV infection (p < 0.05). In the absence of EBV infection, lower expression of CTNNBIP1 was observed. There was no association between H. pylori infection and CTNNBIP1 expression. Our findings revealed the tumor suppressor role for CTNNBIP1 in gastric adenocarcinoma. Interestingly, EBV and CMV infections modulate CTNNBIP1 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/genética , Metilação de DNA/genética , Neoplasias Gástricas/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Herpesvirus Humano 4/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Via de Sinalização Wnt/genética , beta Catenina/genética
2.
J Cell Physiol ; 234(4): 4115-4124, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30132887

RESUMO

Gastric cancer (GC) is one of the most common causes of cancer-related death in the world, with multiple genetic and epigenetic alterations involved in disease development. CYLD tumor suppressor gene encodes a multifunctional deubiquitinase which negatively regulates various signaling pathways. Deregulation of this gene has been found in different types of cancer. This study aimed to evaluate for the first time the CpG island methylation pattern of CYLD gene promoter, and its expression level in gastric adenocarcinoma. CYLD messenger RNA expression and promoter methylation in 53 tumoral and their non-neoplastic counterpart tissues were assessed using quantitative polymerase chain reaction and bisulfite sequencing. Also, we investigated the impacts of the infectious agents including Helicobacter pylori (H. pylori), EBV, and CMV on CYLD expression and promoter methylation in GC. Results showed that the expression level of CYLD was downregulated in GC, and was significantly associated with gender (female), patient's age (<60), high grade, and no lymph-node metastasis (p = 0.001, 0.002, 0.03, and 0.003, respectively). Among the 31 analyzed CpG sites located in about 600 bp region within the promoter, two CpG sites were hypermethylated in GC tissues. We also found a significant inverse association between DNA promoter methylation and CYLD expression (p = 0.02). Furthermore, a direct association between H. pylori, EBV, and CMV infections with hypermethylation and reduced CYLD expression was observed (p = 0.04, 0.03, and 0.03, respectively). Our findings indicate that CYLD is downregulated in GC. Infectious agents may influence CYLD expression.


Assuntos
Adenocarcinoma/genética , Metilação de DNA , Enzima Desubiquitinante CYLD/genética , Epigênese Genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Adenocarcinoma/etiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
3.
Neuroimage ; 178: 119-128, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777826

RESUMO

Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS signal is required before it can be practically exploited in applications such as brain-computer interfacing.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Neuroimagem Funcional/métodos , Córtex Pré-Frontal/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
4.
Eur J Microbiol Immunol (Bp) ; 14(2): 154-165, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38470482

RESUMO

Introduction: APC and TP53 are the two most regularly mutated genes in colon adenocarcinoma (COAD), especially in progressive malignancies and antitumoral immune response. The current bioinformatics analysis investigates the APC and TP53 gene expression profile in colon adenocarcinoma as a prognostic characteristic for survival, particularly concentrating on the correlated immune microenvironment. Methods: Clinical and genetic data of colon cancer and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA)-COAD and Genotype-Tissue Expression (GTEx) online databases, respectively. The genetic differential expressions were analyzed in both groups via the one-way ANOVA test. Kaplan-Meier survival curves were applied to estimate the overall survival (OS). P < 0.05 was fixed as statistically significant. On Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis databases, the linkage between immune cell recruitment and APC and TP53 status was assessed through Spearman's correlation analysis. Results: APC and TP53 were found mutated in 66.74% and 85.71% of the 454 and 7 TCGA-COAD patients in colon and rectosigmoid junction primary sites, respectively with a higher log2-transcriptome per million reads compared to the GTEx group (318 samples in sigmoid and 368 samples in transverse). Survival curves revealed a worse significant OS for the high-APC and TP53 profile colon. Spearman's analysis of immune cells demonstrated a strong positive correlation between the APC status and infiltration of T cell CD4+, T cell CD8+, NK cell, and macrophages and also a positive correlation between status and infiltration of T cell CD4+, T cell CD8+. Conclusions: APC and TP53 gene mutations prevail in colon cancer and are extremely associated with poor prognosis and shortest survival. The infiltrating T cell CD4+, T cell CD8+, NK cell, and macrophages populate the colon microenvironment and regulate the mechanisms of tumor advancement, immune evasion, and sensitivity to standard chemotherapy. More comprehensive research is needed to demonstrate these results and turn them into new therapeutic outlooks.

5.
Int Immunopharmacol ; 133: 112156, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669950

RESUMO

Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.


Assuntos
Imunoterapia , Interleucina-15 , Células Matadoras Naturais , Neoplasias , Humanos , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Animais , Imunoterapia/métodos , Transdução de Sinais , Imunoterapia Adotiva/métodos
6.
Clin Exp Med ; 24(1): 29, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294554

RESUMO

Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , MicroRNAs/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Microambiente Tumoral
7.
Toxicol Rep ; 12: 546-563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798987

RESUMO

Recurrent pregnancy Loss (RPL)is a frequent and upsetting condition. Besides the prevalent cause of RPL including chromosomal defects in the embryo,the effect of translational elements like alterations of epigenetics are of great importance. The emergence of epigenetics has offered a fresh outlook on the causes and treatment of RPL by focusing on the examination of DNA methylation. RPL may arise as a result of aberrant DNA methylation of imprinted genes, placenta-specific genes, immune-related genes, and sperm DNA, which may have a direct or indirect impact on embryo implantation, growth, and development. Moreover, the distinct immunological tolerogenic milieu established at the interface between the mother and fetus plays a crucial role in sustaining pregnancy. Given this, there has been a great deal of interest in the regulation of DNA methylation and alterations in the cellular components of the maternal-fetal immunological milieu. The research on DNA methylation's role in RPL incidence and the control of the mother-fetal immunological milieu is summed up in this review.

8.
Biomed Pharmacother ; 177: 117137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018875

RESUMO

One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transdução de Sinais , Receptores Toll-Like , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo
9.
Horm Mol Biol Clin Investig ; 45(2): 55-73, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507551

RESUMO

Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.


Assuntos
Dano ao DNA , MicroRNAs , Neoplasias , Estresse Oxidativo , Humanos , MicroRNAs/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/etiologia , Regulação Neoplásica da Expressão Gênica , Animais , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
10.
Microrna ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39005128

RESUMO

BACKGROUND: Molecular markers in Colorectal Cancer (CRC) are needed for more ac-curate classification and personalized treatment. In this way, we investigated the effects of the BRAF gene on clinical outcomes of its expression fluctuations and its polymorphism at rs1267623 in CRC. METHODS: In this study, 36.36 percent of patients with CRC were women, and 63.63 percent were men. After the pathology department confirmed the tumor of the samples, the stage and grade of the tumor were determined according to the TNM system. Real-time PCR was used to check the expression of the BRAF gene in tumor and non-tumor tissues, and its polymorphism in rs1267623 was also checked using the Tetra-ARMs PCR technique. RESULTS: The expression of BRAF in tumor tissues was significantly higher than in non-tumoral tissues (P = 0.001), indicating an upregulation of BRAF gene expression in tumoral tissues. The user's text is empty. Furthermore, there was a significant correlation between BRAF expression and tumor stage (P = 0.001), as well as tumor grade (P = 0.003). However, no significant link was found between lymph node metastasis and distant metastasis of BRAF gene expression (P = 0.3). Additionally, no mutation was detected in the investigation of rs1267623 polymorphism. CONCLUSION: The BRAF gene was upregulated in tumoral tissues. Remarkably, no mutation was found in the rs1267623 polymorphism. As a result, this gene can be used as a biomarker in the diagnosis and treatment of CRC.

11.
Iran J Pathol ; 19(2): 205-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39118801

RESUMO

Background & Objective: Besides the clinical and laboratory research on the COVID-19 virus, the bioinformatics study in the field of genetics of immunity to COVID-19 is of particular importance. In this account, studies show that in patients with COVID-19, the level of tumor necrosis alpha (TNFα) and interleukin-6 (IL-6) is high and in severe cases of COVID-19, the production of IL-6, TNF-α, and other cytokines increases profoundly. On the other hand, investigating the molecular structure and receptors of IL-6 and TNFα and the structural analysis of the receptor proteins may potentially help to develop new therapeutic plans for COVID-19 infection. Methods: To identify genes with significant and different expressions in patients with COVID-19 in a microarray data set containing transcriptional profiles from GEO as a functional genomic database the GEO query package version 2.64.2 in a programming language R version 4.2.1 was downloaded. In this way, functional enrichment analysis for DEGs, WikiPathways, REGO, gene ontology, and STRING database was also investigated and employed. Results: The structure and function of pro-inflammatory cytokines TNFα and IL-6 involved in the pathogenesis of COVID-19 were investigated, and in general, after performing various analyses in this study and extracting A series of genes with different expressions from the KEGG database, the final 5 DEGs include CXCL14, CXCL6, CCL8, CXCR1, TNFRSF10, and the relationship and expression effects of them were observed in different pathways. Conclusion: IL-6 and TNFα were involved in immunological processes that had a direct and indirect relationship with the activation of cytokines, including IL6 and TNF-a, and cytokine storm, and this indicates their role in the formation of problems and complications, including ARDS, in COVID-19 patients. Of course, determining the effectiveness of each of these genes requires more specialized and clinical studies.

12.
Ethiop J Health Sci ; 33(1): 177-181, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36890930

RESUMO

Aplastic anemia is a rare disease of the hematopoietic system. Although some viral agents have been implicated, the association between COVID-19 and aplastic anemia is unclear. In this way, several cases of aplastic anemia have been reported following infection with COVID-19. Importantly, we reported a 16-year-old girl with severe aplastic anemia with no history of disease following an Omicron infection who did not respond well to treatment despite supportive treatment and immunosuppression.


Assuntos
Anemia Aplástica , COVID-19 , Feminino , Humanos , Adolescente , Anemia Aplástica/complicações , Anemia Aplástica/terapia , COVID-19/complicações , Terapia de Imunossupressão/efeitos adversos
13.
Med Oncol ; 41(1): 21, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112798

RESUMO

Cancer is a complex and multifaceted disease characterized by uncontrolled cell growth, genetic alterations, and disruption of normal cellular processes, leading to the formation of malignant tumors with potentially devastating consequences for patients. Molecular research is important in the diagnosis and treatment, one of the molecular mechanisms involved in various cancers is the fluctuation of gene expression. Non-coding RNAs, especially microRNAs, are involved in different stages of cancer. MicroRNAs are small RNA molecules that are naturally produced within cells and bind to the 3'-UTR of target mRNA, repressing gene expression by regulating translation. Overexpression of miR-19a has been reported in human malignancies. Upregulation of miR-19a as a member of the miR-17-92 cluster is key to tumor formation, cell proliferation, survival, invasion, metastasis, and drug resistance. Furthermore. bioinformatics and in vitro data reveal that the miR-19a-3p isoform binds to the 3'UTR of CBX7 and was identified as the miR-19a-3p target gene. CBX7 is known as a tumor suppressor. This review initially describes the regulation of mir-19a in multiple cancers. Accordingly, the roles of miR-19 in affecting its target gene expression CBX7 in carcinoma also be discussed.


Assuntos
MicroRNAs , Neoplasias , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
14.
J Cell Commun Signal ; 17(3): 639-655, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36149574

RESUMO

Thyroid cancer (TC) is the most common endocrine cancer, accounting for 1.7% of all cancer cases. It has been reported that the existing approach to diagnosing TC is problematic. Therefore, it is essential to develop molecular biomarkers to improve the accuracy of the diagnosis. This study aimed to screen hub lncRNAs in the ceRNA network (ceRNET) connected to TC formation and progression based on the overall survival rate. In this study, first, RNA-seq data from the GDC database were collected. A package called edgeR in R programming language was then used to obtain differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) in TC patients' samples compared to normal samples. Second, DEmRNAs were analyzed for their functional enrichment. Third, to identify RNAs associated with overall survival, the overall survival of these RNAs was analyzed using the Kaplan-Meier plotter database to create a survival associated with the ceRNA network (survival-related ceRNET). Next, the GeneMANIA plugin was used to construct a PPI network to better understand survival-related DEmRNA interactions. The survival ceRNET was then visualized with the Cytoscape software, and hub genes, including hub lncRNAs and hub mRNAs, were identified using the CytoHubba plugin. We found 45 DElncRNAs, 28 DEmiRNAs, and 723 DEmRNAs among thyroid tumor tissue and non-tumor tissue samples. According to KEGG, GO and DO analyses, 723 DEmRNAs were mainly enriched in cancer-related pathways. Importantly, the results found that ten DElncRNAs, four DEmiRNAs, and 68 DEmRNAs are associated with overall survival. In this account, the PPI network was constructed for 68 survival-related DEmRNAs, and ADAMTS9, DTX4, and CLDN10 were identified as hub genes. The ceRNET was created by combining six lncRNAs, 109 miRNAs, and 22 mRNAs related to survival using Cytoscape. in this network, ten hub RNAs were identified by the CytoHubba plugin, including mRNAs (CTXND1, XKRX, IGFBP2, ENTPD1, GALNT7, ADAMTS9) and lncRNAs (AC090673.1, AL162511.1, LINC02454, AL365259.1). This study suggests that three lncRNAs, including AL162511.1, AC090673.1, and AL365259.1, could be reliable diagnostic biomarkers for TC. The findings of this study provide a basis for future studies on the therapeutic potential of these lncRNAs.

15.
Horm Mol Biol Clin Investig ; 44(3): 271-276, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848481

RESUMO

OBJECTIVES: MicroRNA expression disruptions play an important function in the expansion of gastric cancer. Previous investigation has indicated that miR-372-5p doing as an oncogene in several malignancies. CDX1 and CDX2, as target genes of miR-372-5p, play the role of tumor suppressors and oncogenes in gastric cancer cells, respectively. The current investigation explored the effects of miR-372-5p regulation on CDX2 and CDX1 in AGS cell lines and studied their molecular mechanism. METHODS: hsa-miR-372-5p miRCURY LNA miRNA Inhibitors and Mimic were transfected into AGS cell line. The cell viability and cell cycle calculation were defined by MTT assay and flow cytometry, respectively. The Expression levels of miR-372-5p, CDX1, CDX2 and transfection efficiency were measured using Real-time PCR. Statistical investigation p values <0.05 were considered to be meaningful. RESULTS: miR-372-5p particularly was upregulated in control cells and also after transfection by mimic. While its expression was reduced by the inhibitor. Upregulation of miR-372-5p remarkably increased cell growth and led to accumulation in the G2/M phase, although the inhibitor decreased cell growth and accumulation in the S phase. Accordingly, upregulation of miR-372-5p increased CDX2 and decreased CDX1 expression. By inhibition of miR-372-5p, expression of CDX2 was decreased and expression of CDX1 was increased. CONCLUSIONS: Up and down-regulation of miR-372-5P has a potential effect on the expression levels of its target genes, CDX1 and CDX22. Accordingly, the downregulation of miR-372-5p may be assumed as a possible therapeutic target in treating gastric cancer.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Fator de Transcrição CDX2/genética , Linhagem Celular , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transfecção
16.
Horm Mol Biol Clin Investig ; 44(3): 337-356, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799246

RESUMO

DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Nucleossomos/genética , Metilação de DNA , Neoplasias/genética , Neoplasias/terapia , DNA/química , DNA/metabolismo , Epigênese Genética
17.
Med Oncol ; 40(8): 243, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453930

RESUMO

The advent of immune checkpoint inhibitors (ICIs) has led to noteworthy progressions in the management of diverse cancer types, as evidenced by the pioneering "ipilimumab" medication authorized by US FDA in 2011. Importantly, ICIs agents have demonstrated encouraging potential in bringing about transformation across diverse forms of cancer by selectively targeting the immune checkpoint pathways that are exploited by cancerous cells for dodging the immune system, culminating in progressive and favorable health outcomes for patients. The primary mechanism of action (MOA) of ICIs involves blocking inhibitory immune checkpoints. There are three approved categories including Programmed Death (PD-1) inhibitors (cemiplimab, nivolumab, and pembrolizumab), Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (Ipilimumab), and Programmed Death-Ligand 1 (PDL-1) (Avelumab). Although ICIs promisingly increase therapeutic response and cancer survival rates, using ICIs has demonstrated some limitations including autoimmune reactions and toxicities, requiring close monitoring. The present review endeavors to explicate the underlying principles of the MOA and pharmacokinetics of the approved ICIs in the realm of cancer induction, including an appraisal of their level of practice-based evidence.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/efeitos adversos , Ipilimumab/uso terapêutico , Nivolumabe/uso terapêutico , Neoplasias/tratamento farmacológico
18.
Med Oncol ; 39(9): 130, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716323

RESUMO

Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). While IDO1 is generally not expressed at appreciable levels in the adult central nervous system, it is rapidly stimulated and highly expressed in response to ongoing immune surveillance in cancer. Increased levels of immune surveillance in cancer are thus related to higher intratumoral IDO expression levels and, as a result, a worse OS in GBM patients. Conversion of the important amino acid tryptophan into downstream catabolite known as kynurenines is the major function of IDO. Decreasing tryptophan and increasing the concentration of immunomodulatory tryptophan metabolites has been shown to induce T-cell apoptosis, increase immunosuppressive programming, and death of tumor antigen-presenting dendritic cells. This observation supported the immunotherapeutic strategy, and the targeted molecular therapy that suppresses IDO1 activity. We review the current understanding of the role of IDO1 in tumor immunological escape in brain tumors, the immunomodulatory effects of its primary catabolites, preclinical research targeting this enzymatic pathway, and various issues that need to be overcome to increase the prospective immunotherapeutic relevance in the treatment of GBM malignancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Estudos Prospectivos , Triptofano/metabolismo
19.
Microrna ; 11(1): 12-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319404

RESUMO

Gastric cancer (GC) is the fourth most frequent disease in the world and the second cause of cancer-related death. In this way, over 80% of diagnoses are made in the middle to advanced degrees of the disease, underscoring the requirement for innovative biomarkers that can be identified quickly. Meaningly, biomarkers that can complement endoscopic diagnosis and be used to detect patients with a high risk of GC are desperately needed. These biomarkers will allow for the accurate prediction of therapy response and prognosis in GC patients, as well as the development of an optimal treatment strategy for each individual. Conspicuously, microRNAs (miRNAs) and small noncoding RNA regulate the expression of target mRNA, thereby modifying critical biological mechanisms. According to the data, abnormally miRNAs expression in GC is linked to tumor growth, carcinogenesis, aggression, and distant metastasis. Importantly, miRNA expression patterns and nextgeneration sequencing (NGS) can also be applied to analyze different kinds of tissues and cancers. Given the high death rates and poor prognosis of GC, and the absence of a clinical diagnostic factor that is adequately sensitive to GC, research on novel sensitive and specific markers for GC diagnosis is critical. In this review, we examine the latest research findings that suggest the feasibility and clinical utility of miRNAs in GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia
20.
J Egypt Natl Canc Inst ; 34(1): 57, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464752

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most important cancers in the world, and its prevalence varies depending on the geographical area. Genetically, tumor regeneration in CRC as a multi-step process involves activating mutations in protocogenes and losing the function of tumor suppressor genes as well as DNA repair and recovery genes. Occur in this way, our goal was to investigate the expression of KLF6 genes as a tumor suppressor and MUTYH involved in the DNA repair process in colorectal cancer. METHODS: This research was conducted during the years 2019-2018 in Razi Hospital, Rasht. The subjects included 30 tumoral and 30 non-tumoral tissues of colorectal cancer and 20 healthy controls. The real-time PCR method was used to investigate the gene expression. For data analysis by SPSS, parametric statistical tests ANOVA and T test and regression analysis were used and p value values less than 0.05 were considered significant. RESULTS: The expression of KLF6 gene in tumoral tissues showed a significant decrease compared to non-tumoral tissues (P = 0.04). Also, the expression of MUTYH gene in tumor tissue showed a significant decrease compared to non-tumoral (P = 0.02) and this decrease in MUTYH gene expression had a significant relationship with increasing tumor stage (P = 0.01). CONCLUSION: These findings suggest that decreased expression of KLF6 and MUTYH genes in the study population has a significant relationship with colorectal cancer and can be considered as tumor marker in diagnostic purpose.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Fator 6 Semelhante a Kruppel , Margens de Excisão , Humanos , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Expressão Gênica , Fator 6 Semelhante a Kruppel/genética , DNA Glicosilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA