Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1851(12): 1577-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434697

RESUMO

BACKGROUND: Liver X receptors (LXRs) are transcription factors activated by cholesterol metabolites containing an oxidized side chain. Due to their ability to regulate lipid metabolism and cholesterol transport, they have become attractive pharmacological targets. LXRs are closely related to DAF-12, a nuclear receptor involved in nematode lifespan and regulated by the binding of C-27 steroidal acids. Based on our recent finding that the lack of the C-25 methyl group does not abolish their DAF-12 activity, we evaluated the effect of removing it from the (25R)-cholestenoic acid, a LXR agonist. METHODS: The binding mode and the molecular basis of action of 27-nor-5-cholestenoic acid were evaluated using molecular dynamics simulations. The biological activity was investigated using reporter gene expression assays and determining the expression levels of endogenous target genes. The in vitro MARCoNI assay was used to analyze the interaction with cofactors. RESULTS: 27-Nor-5-cholestenoic acid behaves as an inverse agonist. This correlates with the capacity of the complex to better bind corepressors rather than coactivators. The C-25 methyl moiety would be necessary for the maintenance of a torsioned conformation of the steroid side chain that stabilizes an active LXRß state. CONCLUSION: We found that a 27-nor analog is able to act as a LXR ligand. Interestingly, this minimal structural change on the steroid triggered a drastic change in the LXR response. GENERAL SIGNIFICANCE: Results contribute to improve our understanding on the molecular basis of LXRß mechanisms of action and provide a new scaffold in the quest for selective LXR modulators.


Assuntos
Colestenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/metabolismo , Sítios de Ligação , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Receptores X do Fígado , Receptores Nucleares Órfãos/genética
2.
Biochem J ; 465(1): 175-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25374049

RESUMO

Dafachronic acids (DAs) are 3-keto cholestenoic acids bearing a carboxylic acid moiety at the end of the steroid side chain. These compounds interact with the DAF-12 receptor, a ligand-dependent transcription factor that acts as a molecular switch mediating the choice between arrest at diapause or progression to reproductive development and adult lifespan in different nematodes. Recently, we reported that the 27-nor-Δ4-DA was able to directly activate DAF-12 in a transactivation cell-based luciferase assay and rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants. In the present paper, to investigate further the relationship between the structure of the steroid side chain and DAF-12 activity, we evaluated the in vitro and in vivo activity of Δ4-DA analogues with modified side chains using transactivation cell-based assays and daf-9(dh6) C. elegans mutants. Our results revealed that introduction of a 24,25-double bond on the cholestenoic acid side chain did not affect DAF-12 activity, whereas shortening the side chain lowered the activity. Most interestingly, the C24 alcohol 24-hydroxy-4-cholen-3-one (6) was an antagonist of the DAF-12 receptor both in vitro and in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Colestenos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Alelos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Colestenos/química , Genes Reporter , Células HEK293 , Humanos , Ligantes
3.
Bioorg Med Chem Lett ; 23(10): 2893-6, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23570785

RESUMO

27-Nor-Δ(4)-dafachronic acid was prepared in nine steps and 14% overall yield by two sequential 2-carbon homologations from 20ß-carboxyaldehyde-4-pregnen-3-one. Its activity was evaluated in vivo, where it rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants and restored their normal resistance to oxidative stress. 27-Nor-Δ(4)-dafachronic acid was also able to directly bind and activate DAF-12 in a transactivation cell-based luciferase reporter assay, although it was less active than the corresponding 25R-and 25S dafachronic acids. The binding mode of the 27-Nor steroid was studied by molecular dynamics using a homology model of the CeDAF-12 receptor.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/química , Colestenos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Colestenos/síntese química , Colestenos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares/química , Relação Estrutura-Atividade
4.
Biochem Pharmacol ; 83(2): 253-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22056620

RESUMO

A set of sulfamides designed, synthesized and evaluated against maximal electroshock seizure (MES) and pentilenetetrazol (PTZ) tests with promising results, were tested for their affinity for the benzodiazepine binding site of the GABA(A) receptor. The most active compounds, N,N'-dicyclohexylsulfamide (7) and N,N'-diphenethylsulfamide (10), competitively inhibited the binding of [(3)H]-flunitrazepam to the benzodiazepine binding site with K(i)±SEM values of 27.7±4.5µM (n=3) and 6.0±1.2µM (n=3), respectively. The behavioral actions of these sulfamides, i.p. administered in mice, were examined in the plus-maze, hole-board and locomotor activity assays. Compound 7 exhibited anxiolytic-like effects in mice evidenced by a significant increase of the parameters measured in the hole-board test (at 1 and 3mg/kg) and the plus-maze assay (at 1 and 3mg/kg). Compound 10 evidenced anxiolytic activity in the plus-maze and the hole-board tests at 1mg/kg. Locomotor activity of mice was not modified by compound 7 or 10 at the doses tested. Flumazenil, a non selective benzodiazepine binding site antagonist, was able to completely reverse the anxiolytic-like effects of these sulfamides, proving that the GABA(A) receptor is implicated in this action. Anxiety represents a major problem for people with epilepsy. The use of anxiolytic and anticonvulsant sulfamides would be beneficial to individuals who suffer from both disorders.


Assuntos
Ansiolíticos/metabolismo , Anticonvulsivantes/metabolismo , Ansiedade/metabolismo , Benzodiazepinas/metabolismo , Receptores de GABA-A/metabolismo , Sulfonamidas/metabolismo , Animais , Ansiolíticos/química , Ansiolíticos/uso terapêutico , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Flunitrazepam/química , Flunitrazepam/metabolismo , Flunitrazepam/uso terapêutico , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Sulfonamidas/química , Sulfonamidas/uso terapêutico
5.
J Med Chem ; 52(6): 1592-601, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19249853

RESUMO

Sulfamides are promising functions for the design of new antiepileptic drugs ( Bioorg. Med. Chem. 2007, 15, 1556-1567; 5604-5614 ). Following previous research in this line, a set of amino acid-derived sulfamides has been designed, synthesized, and tested as new anticonvulsant compounds. The experimental data confirmed the ability of some of the structures to suppress the convulsions originated by the electrical seizure (MES test) at low doses (100 mg/kg).


Assuntos
Amidas/síntese química , Amidas/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Amidas/química , Anticonvulsivantes/química , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA