RESUMO
OBJECTIVES: Immune monitoring is an important aspect in diagnostics and clinical trials for patients with compromised immune systems. Flow cytometry is the standard method for immune cell counting but faces limitations. Best practice guidelines are available, but lack of standardization complicates compliance with e.g., in vitro diagnostic regulations. Limited sample availability forces immune monitoring to predominantly use population-based reference intervals. Epigenetic qPCR has evolved as alternative with broad applicability and low logistical demands. Analytical performance specifications (APS) have been defined for qPCR in several regulated fields including testing of genetically modified organisms or vector-shedding. METHODS: APS were characterized using five epigenetic qPCR-based assays quantifying CD3+, CD4+, CD8+ T, B and NK cells in light of regulatory requirements. RESULTS: Epigenetic qPCR meets all specifications including bias, variability, linearity, ruggedness and sample stability as suggested by pertinent guidelines and regulations. The assays were subsequently applied to capillary blood from 25 normal donors over a 28-day period. Index of individuality (IoI) and reference change values were determined to evaluate potential diagnostic gains of individual reference intervals. Analysis of the IoI suggests benefits for individual over population-based references. Reference change values (RCVs) show that changes of approx. Fifty percent from prior measurement are suggestive for clinically relevant changes in any of the 5 cell types. CONCLUSIONS: The demonstrated precision, long-term stability and obtained RCVs render epigenetic cell counting a promising tool for immune monitoring in clinical trials and diagnosis.
Assuntos
Epigênese Genética , Células Matadoras Naturais , Humanos , Citometria de FluxoRESUMO
[This corrects the article DOI: 10.3389/fimmu.2023.1107900.].
RESUMO
Background: The course of COVID-19 is associated with severe dysbalance of the immune system, causing both leukocytosis and lymphopenia. Immune cell monitoring may be a powerful tool to prognosticate disease outcome. However, SARS-CoV-2 positive subjects are isolated upon initial diagnosis, thus barring standard immune monitoring using fresh blood. This dilemma may be solved by epigenetic immune cell counting. Methods: In this study, we used epigenetic immune cell counting by qPCR as an alternative way of quantitative immune monitoring for venous blood, capillary blood dried on filter paper (dried blood spots, DBS) and nasopharyngeal swabs, potentially allowing a home-based monitoring approach. Results: Epigenetic immune cell counting in venous blood showed equivalence with dried blood spots and with flow cytometrically determined cell counts of venous blood in healthy subjects. In venous blood, we detected relative lymphopenia, neutrophilia, and a decreased lymphocyte-to-neutrophil ratio for COVID-19 patients (n =103) when compared with healthy donors (n = 113). Along with reported sex-related differences in survival we observed dramatically lower regulatory T cell counts in male patients. In nasopharyngeal swabs, T and B cell counts were significantly lower in patients compared to healthy subjects, mirroring the lymphopenia in blood. Naïve B cell frequency was lower in severely ill patients than in patients with milder stages. Conclusions: Overall, the analysis of immune cell counts is a strong predictor of clinical disease course and the use of epigenetic immune cell counting by qPCR may provide a tool that can be used even for home-isolated patients.
Assuntos
COVID-19 , Linfopenia , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2 , Monitorização Imunológica , Prognóstico , Progressão da Doença , Epigênese GenéticaRESUMO
Epstein-Barr virus (EBV) reactivation can lead to serious complications in kidney transplant patients, including post-transplant lymphoproliferative disorder (PTLD). Here, we have assessed the impact of EBV on B cell homeostasis at cellular and humoral level. In a multicenter study monitoring 540 kidney transplant patients during the first post-transplant year, EBV reactivation was detected in 109 patients. Thirteen soluble factors and B cell counts were analyzed in an EBV+ sub-cohort (N = 54) before, at peak and after EBV clearance and compared to a control group (N = 50). The B cell activating factor (BAFF) was significantly elevated among EBV+ patients. No additional soluble factors were associated with EBV. Importantly, in vitro experiments confirmed the proliferative effect of BAFF on EBV-infected B cells, simultaneously promoting EBV production. In contrast, elevated levels of BAFF in EBV+ patients did not lead to B cell expansion in vivo. Moreover, diminished positive inter-correlations of soluble factors and alterations of the bi-directional interplay between B cell and soluble factors were observed in EBV+ patients at peak and after clearance. Our data suggest that such alterations may counteract the proliferative effect of BAFF, preventing B cell expansion. The role of these alterations in lymphoma development should be analyzed in future studies.
Assuntos
Fator Ativador de Células B/metabolismo , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/etiologia , Transplante de Rim/efeitos adversos , Adulto , Fator Ativador de Células B/sangue , Fator Ativador de Células B/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/fisiologia , Linhagem Celular , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Carga Viral , Viremia/etiologiaRESUMO
There is increasing evidence that T lymphocytes play a key role in controlling endogenous regeneration. Regeneration appears to be impaired in case of local accumulation of CD8+ effector T cells (TEFF), impairing endogenous regeneration by increasing a primary "useful" inflammation toward a damaging level. Thus, rescuing regeneration by regulating the heightened pro-inflammatory reaction employing regulatory CD4+ T (TReg) cells could represent an immunomodulatory option to enhance healing. Hypothesis was that CD4+ TReg might counteract undesired effects of CD8+ TEFF. Using adoptive TReg transfer, bone healing was consistently improved in mice possessing an inexperienced immune system with low amounts of CD8+ TEFF. In contrast, mice with an experienced immune system (high amounts of CD8+ TEFF) showed heterogeneous bone repair with regeneration being dependent upon the individual TEFF/TReg ratio. Thus, the healing outcome can only be improved by an adoptive TReg therapy, if an unfavorable TEFF/TReg ratio can be reshaped; if the individual CD8+ TEFF percentage, which is dependent on the individual immune experience can be changed toward a favorable ratio by the TReg transfer. Remarkably, also in patients with impaired fracture healing the TEFF/TReg ratio was higher compared to uneventful healers, validating our finding in the mouse osteotomy model. Our data demonstrate for the first time the key-role of a balanced TEFF/TReg response following injury needed to reach successful regeneration using bone as a model system. Considering this strategy, novel opportunities for immunotherapy in patients, which are at risk for impaired healing by targeting TEFF cells and supporting TReg cells to enhance healing are possible.