Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956984

RESUMO

The main cause of most skin cancers is damage from UVB from sunlight, which penetrate the skin surface and induce inflammation. For this reason, this study aims to identify natural products with photo-protection properties and their mode of action by using the UVB-irradiated HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level. The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which have been previously described as antioxidant and anti-inflammation. Together, we demonstrated that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.


Assuntos
Anti-Inflamatórios , Frutas , Queratinócitos , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Frutas/química , Queratinócitos/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Plantas Medicinais , Raios Ultravioleta/efeitos adversos
2.
Biochem Biophys Res Commun ; 470(1): 144-149, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26773496

RESUMO

Microphthalmia-associated transcription factor (MITF) is a key regulator of differentiation of melanocytes and retinal pigment epithelial cells, but it also has functions in non-pigment cells. MITF consists of multiple isoforms, including widely expressed MITF-A and MITF-H. In the present study, we explored the potential role played by the Hedgehog signaling on MITF expression in two common types of primary liver cancer, using human cholangiocarcinoma cell lines, the KKU-100 and HuCCT1, along with the HepG2 human hepatocellular carcinoma cell line. Importantly, cholangiocarcinoma is characterized by the activated Hedgehog signaling. Here we show that MITF-A mRNA is predominantly expressed in all three human liver cancer cell lines examined. Moreover, cyclopamine, an inhibitor of the Hedgehog signalling, increased the expression levels of MITF proteins in HuCCT1 and HepG2 cells, but not in KKU-100 cells, suggesting that MITF expression may be down-regulated in some liver cancer cases.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colangiocarcinoma/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Alcaloides de Veratrum/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos
3.
Tumour Biol ; 37(8): 11495-507, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27015836

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor regulating antioxidant, cytoprotective, and metabolic enzymes, plays important roles in drug resistance and proliferation in cancer cells. The present study was aimed to examine the expression of Nrf2 in connection with chemotherapeutic drug sensitivity on cholangiocarcinoma (CCA) cells. The basal levels of Nrf2 protein in cytosol and nuclear fractions of CCA cells were determined using Western blot analysis. Nrf2 mRNA expression of KKU-M156 and KKU-100 cells, representatives of low and high-Nrf2-expressing CCA cells, were silenced using siRNA. After knockdown of Nrf2, the sensitivity of those cells to the cytotoxicity of cisplatin (Cis) was enhanced in association with the increased release of AIF and downregulation of Bcl-xl in both cells. Also, knockdown of Nrf2 suppressed the replicative capability of those cells in colony-forming assay and enhanced their sensitivity to antiproliferative activity of Cis and 5-fluorouracil. The chemosensitizing effect was associated with the suppressed expression of Nrf2-regulated and Cis-induced antioxidant and metabolic genes including NQO1, HO-1, GCLC, TXN, MRP2, TKT, and G6PD. In cell cycle analysis, Nrf2 knockdown cells were arrested at G0/G1 phase and combination with Cis increased the accumulation of cells at S phase. The suppression of KKU-M156 cell proliferation was associated with the downregulation of cyclin D1 and increased level of p21. Inhibition of Nrf2 could be a novel strategy in enhancing antitumor activity of chemotherapeutic agent in control of resistant cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Cisplatino/farmacologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Reação em Cadeia da Polimerase
4.
In Vitro Cell Dev Biol Anim ; 58(3): 232-242, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235152

RESUMO

Domestic pigs have become increasingly popular as a model for human diseases such as neurological diseases. Drug discovery platforms have increasingly been used to identify novel compounds that combat neurodegeneration. Currently, bioactive molecules such as melatonin have been demonstrated to offer a neuroprotective effect in several studies. However, a neurodegenerative platform to study novel compounds in a porcine model has not been fully established. In this study, characterized porcine induced neural stem cells (iNSCs) were used for evaluation of the protective effect of melatonin against chemical and pathogenic stimulation. First, the effects of different concentrations of melatonin on the proliferation of porcine iNSCs were studied. Second, porcine iNSCs were treated with the appropriate concentration of melatonin prior to induced degeneration with dimethyl sulfoxide or Zika virus (ZIKV). The results demonstrated that the percentages of Ki67 expression in porcine iNSCs cultured in 0.1, 1, and 10 nM melatonin were not significantly different from that in the control groups. Melatonin at 1 nM protected porcine iNSCs from DMSO-induced degeneration, as confirmed by a dead cell exclusion assay and mitochondrial membrane potential (ΔΨm) analysis. In addition, pretreatment with melatonin reduced the percentage of dead porcine iNSCs after ZIKV infection. Melatonin increased the ΔΨm, resulting in a decrease in cell degeneration. However, pretreatment with melatonin was unable to suppress ZIKV replication in porcine iNSCs. In conclusion, the present study demonstrated the anti-degenerative effect of melatonin against DMSO- and ZIKV-induced degeneration in porcine iNSCs.


Assuntos
Melatonina , Células-Tronco Neurais , Doenças dos Suínos , Infecção por Zika virus , Zika virus , Animais , Dimetil Sulfóxido/farmacologia , Melatonina/farmacologia , Suínos , Replicação Viral
5.
Asian Pac J Cancer Prev ; 22(2): 381-390, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639651

RESUMO

OBJECTIVE: Cholangiocarcinoma (CCA) is a noxious malignancy of epithelium of the bile duct with a low response rate to chemotherapy. The epidermal growth factor receptor (EGFR) signaling pathway is implicated in the development of cancerous cells, especially CCA. In this study, we report detailed biological profiling of 13f identified from our earlier hit expansion studies. The aim of this work was to expand our understanding of 13f via more detailed investigations of its mechanism of action against KKU-100, KKU-452 and KKU-M156 CCA cells, as well as in comparison to the EGFR inhibitor Gefitinib and non-specific chemotherapeutic agents such as Cisplatin. METHODS: Inhibiting EGFR-Kinase, cytotoxicity, clonogenic assay, wound healing and apoptosis were performed. Levels of total expression of EGFR and EGFR phosphorylation proteins were detected. RESULTS: 13f was confirmed as an inhibitor of EGFR with an IC50 value against the tyrosine kinase of EGFR of 22 nM and IC50 values for 48 h incubation period were 1.3 ± 1.9, 1.5 ± 0.4 and 1.7 ± 1.1 µM of KKU-100, KKU-452 and KKU-M156, respectively through dose- and time-dependent induction of early apoptosis of CCA cells. The compound also suppressed the clonogenic ability of KKU-100 and KKU-M156 cells stronger than Gefitinib, while potently inhibiting EGF-stimulated CCA cell migratory activity in KKU-452 cells. It was observed that under normal conditions EGFR was activated in CCA cells. EGF-stimulated basal expression of EGFR in KKU-452 cells was suppressed following 13f treatment, which was significantly greater than that of the marketed EGFR inhibitor Gefitinib. CONCLUSION: In summary, our study showed that 13f has potent anti-cancer activities including antiproliferation, clonogenic ability and migration through the modulation of EGFR signaling pathway in CCA for the first time. The compound represents an interesting starting point as a potential chemotherapeutic agent in ongoing efforts to improve response rate in CCA patients.
.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Receptores ErbB/antagonistas & inibidores , Sulfonamidas/farmacologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos
6.
Naunyn Schmiedebergs Arch Pharmacol ; 388(6): 601-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25708948

RESUMO

Resistance to chemotherapy is the major problem in cancer treatment. Cholangiocarcinoma (CCA) is the tumor arising from the bile duct epithelium. The disease is characterized by very poor prognosis and rarely responds to current radiotherapy or chemotherapy. Transcription factor Nrf2 is activated by oxidative stress and electrophiles and contributes to cytoprotection in normal cells as well as cancer cells. Inhibition of Nrf2 can enhance the sensitivity of cancer cells to chemotherapeutic agents, although this sensitizing effect is variable depending on the cancers. In this study, we selected three CCA cell lines with different Nrf2 expression levels, detected by immunocytofluorescent staining. Chemotherapeutic agents variably induced the expression of antioxidant and xenobiotic metabolizing genes including Nrf2, NQO1, HO-1, GCLC, and GSTP1. Knockdown of Nrf2 expression by siRNA suppressed protein expression of Nrf2-regulated genes and enhanced the sensitivity to 5-fluorouracil and gemcitabine of CCA cells in both high and low basal Nrf2 expression. Cells with more resistance to chemotherapeutic agents gained more chemosensitizing effect by Nrf2 inhibition than the sensitive cells. The IC50 of the chemotherapeutic agents was also significantly reduced and the maximal cytotoxic effect was increased. Suppression of Nrf2 signaling may be a strategy to increase the efficacy of chemotherapy to CCA.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Desoxicitidina/análogos & derivados , Fluoruracila/farmacologia , Fator 2 Relacionado a NF-E2/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Desoxicitidina/farmacologia , Técnicas de Silenciamento de Genes , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa S-Transferase pi/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Gencitabina
7.
J Nat Med ; 68(4): 730-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24913971

RESUMO

Two new compounds, derrivanone (1) and derrischalcone (2), were isolated from the crude hexane extract of the fruits of Derris indica. In addition, 14 known compounds were isolated from the fruits of this plant. Chalcones 2-4 showed strong cytotoxicity against cholangiocarcinoma cell line (M156) and human hepatoma HepG2 cells. In addition, flavanones 15 and 16 exhibited potent and high cytotoxic efficacy.


Assuntos
Antineoplásicos/química , Antineoplásicos/toxicidade , Derris/química , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Linhagem Celular Tumoral , Chalconas/química , Colangiocarcinoma/tratamento farmacológico , Flavanonas/química , Flavanonas/toxicidade , Frutas/química , Células Hep G2 , Humanos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA