RESUMO
Breast cancer continues to pose a substantial worldwide health concern, demanding a thorough comprehension of the complex interaction between cancerous cells and the immune system. Recent studies have shown the significant function of exosomes in facilitating intercellular communication and their participation in the advancement of cancer. Tumor-derived exosomes have been identified as significant regulators in the context of breast cancer, playing a crucial role in modulating immune cell activity and contributing to the advancement of the illness. This study aims to investigate the many effects of tumor-derived exosomes on immune cells in the setting of breast cancer. Specifically, we will examine their role in influencing immune cell polarization, facilitating immunological evasion, and modifying the tumor microenvironment. Furthermore, we explore the nascent domain of exosomes produced from immune cells and their prospective involvement in the prevention of breast cancer. This paper focuses on new research that emphasizes the immunomodulatory characteristics of exosomes produced from immune cells. It also explores the possibility of these exosomes as therapeutic agents or biomarkers for the early identification and prevention of breast cancer. The exploration of the reciprocal connections between exosomes formed from tumors and immune cells, together with the rising significance of exosomes derived from immune cells, presents a potential avenue for the advancement of novel approaches in the field of breast cancer therapy and prevention.
Assuntos
Neoplasias da Mama , Exossomos , Neoplasias , Humanos , Feminino , Neoplasias da Mama/patologia , Exossomos/patologia , Estudos Prospectivos , Comunicação Celular , Microambiente TumoralRESUMO
Malignant mesothelioma (MMe) is an aggressive neoplasm that occurs through the transformation of mesothelial cells. Asbestos exposure is the main risk factor for MMe carcinogenesis. Other important etiologies for MMe development include DNA damage, over-activation of survival signaling pathways, and failure of DNA damage response (DDR). In this review article, first, we will describe the most important signaling pathways that contribute to MMe development and their interaction with DDR. Then, the contribution of DDR failure in MMe progression will be discussed. Finally, we will review the latest MMe therapeutic strategies that target the DDR pathway.
RESUMO
LncRNAs and miRNAs are the two most important non-coding RNAs, which have been identified to be associated with cancer progression or prevention. The dysregulation of lncRNAs conducts tumorigenesis and metastasis in different ways. One of the mechanisms is that lncRNAs interact with miRNAs to regulate distinct cellular and genomic processes and cancer progression. LncRNA SNHG7 as an oncogene sponges miRNAs and develops lncRNA-miRNA-mRNA axes, leading to the regulation of several signaling pathways such as Wnt/ß-Catenin, PI3K/AKT/mTOR, SIRT1, and Snail-EMT. Therefore, in this article, after a brief overview of lncRNA SNHG7-miRNA-mRNA axes' contribution to cancer development, we will discuss the role of lncRNA SNHG7 in the genes expression and signaling pathways related to cancers development via acting as a ceRNA.
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de GenesRESUMO
In the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01-1 pg mL-1, and with a lower limit of quantification of 10 attogram/mL (10 ag mL-1). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.