RESUMO
Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.
Assuntos
Condrogênese , Células-Tronco Mesenquimais , Humanos , Fibronectinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma , Caderinas/metabolismo , Adesão Celular , Diferenciação CelularRESUMO
Fibrillar collagens are the most abundant extracellular matrix components in non-small cell lung cancer (NSCLC). However, the potential of collagen fiber descriptors as a source of clinically relevant biomarkers in NSCLC is largely unknown. Similarly, our understanding of the aberrant collagen organization and associated tumor-promoting effects is very scarce. To address these limitations, we identified a digital pathology approach that can be easily implemented in pathology units based on CT-FIRE software (version 2; https://loci.wisc.edu/software/ctfire) analysis of Picrosirius red (PSR) stains of fibrillar collagens imaged with polarized light (PL). CT-FIRE settings were pre-optimized to assess a panel of collagen fiber descriptors in PSR-PL images of tissue microarrays from surgical NSCLC patients (106 adenocarcinomas [ADC] and 89 squamous cell carcinomas [SCC]). Using this approach, we identified straightness as the single high-accuracy diagnostic collagen fiber descriptor (average area under the curve = 0.92) and fiber density as the single descriptor consistently associated with a poor prognosis in both ADC and SCC independently of the gold standard based on the TNM staging (hazard ratio, 2.69; 95% CI, 1.55-4.66; P < .001). Moreover, we found that collagen fibers were markedly straighter, longer, and more aligned in tumor samples compared to paired samples from uninvolved pulmonary tissue, particularly in ADC, which is indicative of increased tumor stiffening. Consistently, we observed an increase in a panel of stiffness-associated processes in the high collagen fiber density patient group selectively in ADC, including venous/lymphatic invasion, fibroblast activation (α-smooth muscle actin), and immune evasion (programmed death-ligand 1). Similarly, a transcriptional correlation analysis supported the potential involvement of the major YAP/TAZ pathway in ADC. Our results provide a proof-of-principle to use CT-FIRE analysis of PSR-PL images to assess new collagen fiber-based diagnostic and prognostic biomarkers in pathology units, which may improve the clinical management of patients with surgical NSCLC. Our findings also unveil an aberrant stiff microenvironment in lung ADC that may foster immune evasion and dissemination, encouraging future work to identify therapeutic opportunities.
Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Prognóstico , Colágenos Fibrilares/análise , Colágenos Fibrilares/uso terapêutico , Adenocarcinoma/patologia , Colágeno , Carcinoma de Células Escamosas/patologia , Microambiente TumoralRESUMO
Three dimensional (3D) bioprinting is an emerging technology that enables complex spatial modeling of cell-based tissue engineering products, whose therapeutic potential in regenerative medicine is enormous. However, its success largely depends on the definition of a bioprintable zone, which is specific for each combination of cell-loaded hydrogels (or bioinks) and scaffolds, matching the mechanical and biological characteristics of the target tissue to be repaired. Therefore proper adjustment of the bioink formulation requires a compromise between: (i) the maintenance of cellular critical quality attributes (CQA) within a defined range of specifications to cell component, and (ii) the mechanical characteristics of the printed tissue to biofabricate. Herein, we investigated the advantages of using natural hydrogel-based bioinks to preserve the most relevant CQA in bone tissue regeneration applications, particularly focusing on cell viability and osteogenic potential of multipotent mesenchymal stromal cells (MSCs) displaying tripotency in vitro, and a phenotypic profile of 99.9% CD105+ /CD45,- 10.3% HLA-DR,+ 100.0% CD90,+ and 99.2% CD73+ /CD31- expression. Remarkably, hyaluronic acid, fibrin, and gelatin allowed for optimal recovery of viable cells, while preserving MSC's proliferation capacity and osteogenic potency in vitro. This was achieved by providing a 3D structure with a compression module below 8.8 ± 0.5 kPa, given that higher values resulted in cell loss by mechanical stress. Beyond the biocompatibility of naturally occurring polymers, our results highlight the enhanced protection on CQA exerted by bioinks of natural origin (preferably HA, gelatin, and fibrin) on MSC, bone marrow during the 3D bioprinting process, reducing shear stress and offering structural support for proliferation and osteogenic differentiation.
Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Hidrogéis/química , Osteogênese , Gelatina/química , Engenharia Tecidual/métodos , Fibrina/metabolismo , Alicerces Teciduais/química , Bioimpressão/métodos , Impressão TridimensionalRESUMO
BACKGROUND: The lack of predictive models that mimic the blood-brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer's disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. RESULTS: In this work, we fabricated a BBB-oC with human astrocytes, pericytes and endothelial cells and a TEER measuring system (TEER-BBB-oC) integrated at a micrometric distance of the endothelial barrier. The characterization displayed a neurovascular network and the expression of tight junctions in the endothelium. We produced GNR-PEG-Ang2/D1 and determined its non-cytotoxic range (0.05-0.4 nM) for plated cells included in the BBB-oC and confirmed its harmless effect at the highest concentration (0.4 nM) in the microfluidic device. The permeability assays revealed that GNR-PEG-Ang2/D1 cross the BBB and this entry is facilitated by Ang2 peptide. Parallel to the permeability analysis of GNR-PEG-Ang2/D1, an interesting behavior of the TJs expression was observed after its administration probably related to the ligands on the nanoparticle surface. CONCLUSIONS: BBB-oC with a novel TEER integrated setup which allow a correct read-out and cell imaging monitoring was proven as a functional and throughput platform to evaluate the brain permeability performance of nanotherapeutics in a physiological environment with human cells, putting forward a viable alternative to animal experimentation.
Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Impedância Elétrica , Ouro/farmacologia , Astrócitos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endotélio/metabolismo , Permeabilidade , Dispositivos Lab-On-A-ChipRESUMO
Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.
Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Células Neoplásicas Circulantes/patologiaRESUMO
BACKGROUND: One of the most prevalent causes of fetal hypoxia leading to stillbirth is placental insufficiency. Hemodynamic changes evaluated with Doppler ultrasound have been used as a surrogate marker of fetal hypoxia. However, Doppler evaluation cannot be performed continuously. As a first step, the present work aimed to evaluate the performance of miniaturized electrochemical sensors in the continuous monitoring of oxygen and pH changes in a model of acute hypoxia-acidosis. METHODS: pH and oxygen electrochemical sensors were evaluated in a ventilatory hypoxia rabbit model. The ventilator hypoxia protocol included 3 differential phases: basal (100% FiO2), the hypoxia-acidosis period (10% FiO2) and recovery (100% FiO2). Sensors were tested in blood tissue (ex vivo sensing) and in muscular tissue (in vivo sensing). pH electrochemical and oxygen sensors were evaluated on the day of insertion (short-term evaluation) and pH electrochemical sensors were also tested after 5 days of insertion (long-term evaluation). pH and oxygen sensing were registered throughout the ventilatory hypoxia protocol (basal, hypoxia-acidosis, and recovery) and were compared with blood gas metabolites results from carotid artery catheterization (obtained with the EPOC blood analyzer). Finally, histological assessment was performed on the sensor insertion site. One-way ANOVA was used for the analysis of the evolution of acid-based metabolites and electrochemical sensor signaling results; a t-test was used for pre- and post-calibration analyses; and chi-square analyses for categorical variables. RESULTS: At the short-term evaluation, both the pH and oxygen electrochemical sensors distinguished the basal and hypoxia-acidosis periods in both the in vivo and ex vivo sensing. However, only the ex vivo sensing detected the recovery period. In the long-term evaluation, the pH electrochemical sensor signal seemed to lose sensibility. Finally, histological assessment revealed no signs of alteration on the day of evaluation (short-term), whereas in the long-term evaluation a sub-acute inflammatory reaction adjacent to the implantation site was detected. CONCLUSIONS: Miniaturized electrochemical sensors represent a new generation of tools for the continuous monitoring of hypoxia-acidosis, which is especially indicated in high-risk pregnancies. Further studies including more tissue-compatible material would be required in order to improve long-term electrochemical sensing.
Assuntos
Acidose , Oxigênio , Animais , Feminino , Concentração de Íons de Hidrogênio , Hipóxia , Modelos Animais , Gravidez , CoelhosRESUMO
Microfabrication and Polydimethylsiloxane (PDMS) soft-lithography techniques became popular for microfluidic prototyping at the lab, but even after protocol optimization, fabrication is yet a long, laborious process and partly user-dependent. Furthermore, the time and money required for the master fabrication process, necessary at any design upgrade, is still elevated. Digital Manufacturing (DM) and Rapid-Prototyping (RP) for microfluidics applications arise as a solution to this and other limitations of photo and soft-lithography fabrication techniques. Particularly for this paper, we will focus on the use of subtractive DM techniques for Organ-on-a-Chip (OoC) applications. Main available thermoplastics for microfluidics are suggested as material choices for device fabrication. The aim of this review is to explore DM and RP technologies for fabrication of an OoC with an embedded membrane after the evaluation of the main limitations of PDMS soft-lithography strategy. Different material options are also reviewed, as well as various bonding strategies. Finally, a new functional OoC device is showed, defining protocols for its fabrication in Cyclic Olefin Polymer (COP) using two different RP technologies. Different cells are seeded in both sides of the membrane as a proof of concept to test the optical and fluidic properties of the device.
Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Microtecnologia , Análise de Sequência com Séries de Oligonucleotídeos , PolímerosRESUMO
Cancer represents one of the conditions with the most causes of death worldwide. Common methods for its diagnosis are based on tissue biopsies-the extraction of tissue from the primary tumor, which is used for its histological analysis. However, this technique represents a risk for the patient, along with being expensive and time-consuming and so it cannot be frequently used to follow the progress of the disease. Liquid biopsy is a new cancer diagnostic alternative, which allows the analysis of the molecular information of the solid tumors via a body fluid draw. This fluid-based diagnostic method displays relevant advantages, including its minimal invasiveness, lower risk, use as often as required, it can be analyzed with the use of microfluidic-based platforms with low consumption of reagent, and it does not require specialized personnel and expensive equipment for the diagnosis. In recent years, the integration of sensors in microfluidics lab-on-a-chip devices was performed for liquid biopsies applications, granting significant advantages in the separation and detection of circulating tumor nucleic acids (ctNAs), circulating tumor cells (CTCs) and exosomes. The improvements in isolation and detection technologies offer increasingly sensitive and selective equipment's, and the integration in microfluidic devices provides a better characterization and analysis of these biomarkers. These fully integrated systems will facilitate the generation of fully automatized platforms at low-cost for compact cancer diagnosis systems at an early stage and for the prediction and prognosis of cancer treatment through the biomarkers for personalized tumor analysis.
Assuntos
Detecção Precoce de Câncer/métodos , Biópsia Líquida/métodos , Microfluídica/métodos , Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/sangue , Exossomos/patologia , Humanos , Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes/patologiaRESUMO
Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell-cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell-substrate adhesion in the tissue engineering strategies for cartilage repair.
Assuntos
Comunicação Celular , Condrogênese , Cartilagem Hialina/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Adulto , Linhagem Celular , Feminino , Humanos , Cartilagem Hialina/citologia , Células-Tronco Mesenquimais/citologia , Engenharia TecidualRESUMO
Patient-derived cancer 3D models are a promising tool that will revolutionize personalized cancer therapy but that require previous knowledge of optimal cell growth conditions and the most advantageous parameters to evaluate biomimetic relevance and monitor therapy efficacy. This study aims to establish general guidelines on 3D model characterization phenomena, focusing on neuroblastoma. We generated gelatin-based scaffolds with different stiffness and performed SK-N-BE(2) and SH-SY5Y aggressive neuroblastoma cell cultures, also performing co-cultures with mouse stromal Schwann cell line (SW10). Model characterization by digital image analysis at different time points revealed that cell proliferation, vitronectin production, and migration-related gene expression depend on growing conditions and are specific to the tumor cell line. Morphometric data show that 3D in vitro models can help generate optimal patient-derived cancer models, by creating, identifying, and choosing patterns of clinically relevant artificial microenvironments to predict patient tumor cell behavior and therapeutic responses.
Assuntos
Movimento Celular , Proliferação de Células , Processamento de Imagem Assistida por Computador , Proteínas de Neoplasias/biossíntese , Neuroblastoma , Biossíntese de Proteínas , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologiaRESUMO
Cell division is accompanied by dramatic changes in shape that ultimately lead to the physical separation of one cell into two. In 2D microenvironments, cells round up and remain adhered onto the substrate by thin retraction fibers during division. In contrast, in 3D environments, cells divide exhibiting long protrusions that guide the orientation of the division axis. However, the mechanism of cell division in three dimensions still remains poorly understood. Here we report the spontaneous formation of transient quasiperiodic membrane pearling on extended mitotic protrusions during 3D cell division. Protrusion membrane pearling may be initiated by the non-uniform distribution of focal adhesions and consequent stationary instability of the protrusive membrane. Overall, membrane pearling emergence may provide insights into a novel modality of 3D cell division with potential physiological relevance.
Assuntos
Divisão Celular/fisiologia , Membrana Celular/fisiologia , Matriz Extracelular/fisiologia , Modelos BiológicosRESUMO
Here we present a nanostructured surface able to produce multivalent interactions between surface-bound ephrinB1 ligands and membrane EphB2 receptors. We created ephrinB1 nanopatterns of regular size (<30 nm in diameter) by using self-assembled diblock copolymers. Next, we used a statistically enhanced version of the Number and Brightness technique, which can discriminate-with molecular sensitivity-the oligomeric states of diffusive species to quantitatively track the EphB2 receptor oligomerization process in real time. The results indicate that a stimulation using randomly distributed surface-bound ligands was not sufficient to fully induce receptor aggregation. Conversely, when nanopatterned onto our substrates, the ligands effectively induced a strong receptor oligomerization. This presentation of ligands improved the clustering efficiency of conventional ligand delivery systems, as it required a 9-fold lower ligand surface coverage and included faster receptor clustering kinetics compared to traditional cross-linked ligands. In conclusion, nanostructured diblock copolymers constitute a novel strategy to induce multivalent ligand-receptor interactions leading to a stronger, faster, and more efficient receptor activation, thus providing a useful strategy to precisely tune and potentiate receptor responses. The efficiency of these materials at inducing cell responses can benefit applications such as the design of new bioactive materials and drug-delivery systems.
Assuntos
Efrina-B1/metabolismo , Proteínas Imobilizadas/metabolismo , Nanoestruturas/química , Polimetil Metacrilato/química , Receptor EphB2/metabolismo , Efrina-B1/química , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Ligantes , Nanoestruturas/ultraestrutura , Agregados Proteicos , Multimerização Proteica , Receptor EphB2/químicaRESUMO
Cancer is one of the greatest threats facing our society, being the second leading cause of death globally. Currents strategies for cancer diagnosis consist of the extraction of a solid tissue from the affected area. This sample enables the study of specific biomarkers and the genetic nature of the tumor. However, the tissue extraction is risky and painful for the patient and in some cases is unavailable in inaccessible tumors. Moreover, a solid biopsy is expensive and time consuming and cannot be applied repeatedly. New alternatives that overcome these drawbacks are rising up nowadays, such as liquid biopsy. A liquid biopsy is the analysis of biomarkers in a non-solid biological tissue, mainly blood, which has remarkable advantages over the traditional method; it has no risk, it is non-invasive and painless, it does not require surgery and reduces cost and diagnosis time. The most studied cancer non-invasive biomarkers are circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. These circulating biomarkers play a key role in the understanding of metastasis and tumorigenesis, which could provide a better insight into the evolution of the tumor dynamics during treatment and disease progression. Improvements in isolation technologies, based on a higher grade of purification of CTCs, exosomes, and ctDNA, will provide a better characterization of biomarkers and give rise to a wide range of clinical applications, such as early detection of diseases, and the prediction of treatment responses due to the discovery of personalized tumor-related biomarkers.
Assuntos
Biomarcadores Tumorais/sangue , Biópsia/métodos , Biópsia Líquida/métodos , Humanos , Células Neoplásicas Circulantes/metabolismoRESUMO
Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.
Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Nanoestruturas/química , Sondas de Oligonucleotídeos/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Campos Eletromagnéticos , Eletroforese/instrumentação , Ouro/química , Humanos , Nanotecnologia , Dióxido de Silício/química , Propriedades de Superfície , Titânio/químicaRESUMO
Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.
RESUMO
Here we describe the design and evaluation of a fluidic device for the automatic processing of microarrays, called microarray processing station or MPS. The microarray processing station once installed on a commercial microarrayer allows automating the washing, and drying steps, which are often performed manually. The substrate where the assay occurs remains on place during the microarray printing, incubation and processing steps, therefore the addressing of nL volumes of the distinct immunoassay reagents such as capture and detection antibodies and samples can be performed on the same coordinate of the substrate with a perfect alignment without requiring any additional mechanical or optical re-alignment methods. This allows the performance of independent immunoassays in a single microarray spot.
Assuntos
Desenho de Equipamento , Imunoensaio/métodos , Análise Serial de Proteínas/métodosRESUMO
The accumulation of iron oxides-mainly magnetite-with amyloid peptide is a key process in the development of Alzheimer's disease (AD). However, the mechanism for biogeneration of magnetite inside the brain of someone with AD is still unclear. The iron-storing protein ferritin has been identified as the main magnetite-storing molecule. However, accumulations of magnetite in AD are not correlated with an increase in ferritin, leaving this question unresolved. Here we demonstrate the key role of amyloid peptide Aß 42, one of the main hallmarks of AD, in the generation of magnetite nanoparticles in the absence of ferritin. The capacity of amyloid peptide to bind and concentrate iron hydroxides, the basis for the formation of magnetite, benefits the spontaneous synthesis of these nanoparticles, even under unfavorable conditions for their formation. Using scanning and transmission electron microscopy, electron energy loss spectroscopy and magnetic force microscopy we characterized the capacity of amyloid peptide Aß 42 to promote magnetite formation.
Assuntos
Nanopartículas de Magnetita , Doença de Alzheimer , Amiloide , Peptídeos beta-Amiloides , Óxido Ferroso-FérricoRESUMO
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.
Assuntos
Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Animais , Axônios/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Clonagem Molecular , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas Analíticas Microfluídicas , Proteínas da Mielina/genética , Neuroglia/metabolismo , Receptor Nogo 1 , Bulbo Olfatório/citologia , Glicoproteína Oligodendrócito-Mielina/farmacologia , Estrutura Terciária de Proteína , Ratos , Receptores de Superfície Celular/genética , Traumatismos da Medula Espinal/terapia , Imagem com Lapso de TempoRESUMO
Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current-voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.
RESUMO
Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.