Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(17): 9424-9437, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314748

RESUMO

The synchronizing measurements of both cyclic voltammograms (CVs) and real-time quick XAFSs (QXAFSs) for Pt/C cathode electrocatalysts in a membrane electrode assembly (MEA) of polymer electrolyte fuel cells (PEFCs) treated by anode-gas exchange (AGEX) and cathode-gas exchange (CGEX) cycles (startup/shutdown conditions of FC vehicles) were performed for the first time to understand the opposite effects of the AGEX and CGEX treatments on the Pt/C performance and durability and also the contradiction between the electrochemical active surface area (ECSA) decrease and the performance increase by CGEX treatment. While the AGEX treatment decreased both the ECSA and performance of MEA Pt/C due to carbon corrosion, it was found that the CGEX treatment decreased the ECSA but increased the Pt/C performance significantly due to high-index (331) facet formation (high-resolution STEM) and hence the suppression of strongly bound Pt-oxide formation at cathode Pt nanoparticle surfaces. Transient QXAFS time-profile analysis for the MEA Pt/C also revealed a direct relationship between the electrochemical performance or durability and transient kinetics of the Pt/C cathode.

2.
Phys Chem Chem Phys ; 22(34): 18919-18931, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32542292

RESUMO

We developed a multi-analysis system that can measure in situ time-resolved quick XAFS (QXAFS) and in situ three-dimensional XAFS-CT spatial imaging in the same area of a cathode electrocatalyst layer in a membrane-electrode assembly (MEA) of a polymer electrolyte fuel cell (PEFC) at the BL36XU beamline of SPring-8. The multi-analysis system also achieves ex situ two-dimensional nano-XAFS/STEM-EDS same-view measurements of a sliced MEA fabricated from a given place in the XAFS-CT imaged area at high spatial resolutions under a water-vapor saturated N2 atmosphere using a same-view SiN membrane cell. In this study, we applied the combination method of time-resolved QXAFS/3D XAFS-CT/2D nano-XAFS/STEM-EDS for the first time for the visualization analysis of the anode-gas exchange (AGEX) (simulation of the start-up/shut-down of PEFC vehicles) degradation process of a PEFC MEA Pt/C cathode. The AGEX cycles bring about serious irreversible degradation of both Pt nanoparticles and carbon support due to a spike-like large voltage increase. We could visualize the three-dimensional distribution and two-dimensional depth map of the amount, oxidation state (valence), Pt2+ elution, detachment, and aggregation of Pt species and the formation of carbon voids, where the change and movement of the Pt species in the cathode catalyst layer during the AGEX cycles did not proceed exceeding the 1 µm region. It is very different from the case of an ADT (an accelerated durability test between 0.6-1.0 VRHE)-degraded MEA. We discuss the spatiotemporal behavior of the AGEX degradation process and the degradation mechanism.

3.
Phys Chem Chem Phys ; 19(8): 6013-6021, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28184398

RESUMO

We performed in situ hard X-ray photoelectron spectroscopy (HAXPES) measurements of the electronic states of platinum nanoparticles on the cathode electrocatalyst of a polymer electrolyte fuel cell (PEFC) using a near ambient pressure (NAP) HAXPES instrument having an 8 keV excitation source. We successfully observed in situ NAP-HAXPES spectra of the Pt/C cathode catalysts of PEFCs under working conditions involving water, not only for the Pt 3d states with large photoionization cross-sections in the hard X-ray regime but also for the Pt 4f states and the valence band with small photoionization cross-sections. Thus, this setup allowed in situ observation of a variety of hard PEFC systems under operating conditions. The Pt 4f spectra of the Pt/C electrocatalysts in PEFCs clearly showed peaks originating from oxidized Pt(ii) at 1.4 V, which unambiguously shows that Pt(iv) species do not exist on the Pt nanoparticles even at such large positive voltages. The water oxidation reaction might take place at that potential (the standard potential of 1.23 V versus a standard hydrogen electrode) but such a reaction should not lead to a buildup of detectable Pt(iv) species. The voltage-dependent NAP-HAXPES Pt 3d spectra revealed different behaviors with increasing voltage (0.6 → 1.0 V) compared with decreasing voltage (1.0 → 0.6 V), showing a clear hysteresis. Moreover, quantitative peak-fitting analysis showed that the fraction of non-metallic Pt species matched the ratio of the surface to total Pt atoms in the nanoparticles, which suggests that Pt oxidation only takes place at the surface of the Pt nanoparticles on the PEFC cathode, and the inner Pt atoms do not participate in the reaction. In the valence band spectra, the density of electronic states near the Fermi edge reduces with decreasing particle size, indicating an increase in the electrocatalytic activity. Additionally, a change in the valence band structure due to the oxidation of platinum atoms was also observed at large positive voltages. The developed apparatus is a valuable in situ tool for the investigation of the electronic states of PEFC electrocatalysts under working conditions.

4.
Phys Chem Chem Phys ; 19(45): 30798-30803, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29134220

RESUMO

Photoelectron spectroscopy has the advantage of providing electric potentials by non-contact measurements based on the kinetic energy shift in component potential. We performed operando hard X-ray photoelectron spectroscopy (HAXPES) measurements with an 8 keV excitation source to measure the shift in electron kinetic energies as a function of the voltages of all the components at the anode and cathode electrodes of a polymer electrolyte fuel cell (PEFC). At the cathode electrode, when we increase the voltage between the cathode and anode from 0.2 to 1.2 V, the O 1s and F 1s peaks shift to a lower binding energy and the magnitude of the energy shift is equal to the voltage. The Pt 3d and C 1s peaks do not shift with the voltage since platinum nanoparticles and carbon supports at the cathode electrode have ground contact. In contrast to the cathode electrode, the peak shifts of all the components at the anode electrode show the same amount of shift as the voltages. It is clear that the change in the potential difference occurs only in an electrical double layer at the interface between the cathode electrode (Pt/C) and the electrolyte (Nafion and water), and that the anode electrode is in equilibrium as a pseudo-hydrogen electrode. Moreover, the electric potential variation of the cathode electrode in a PEFC under a power generation condition was also directly detected by operando HAXPES.

5.
J Am Chem Soc ; 137(40): 12856-64, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26412503

RESUMO

We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells.

6.
Phys Chem Chem Phys ; 16(21): 10075-87, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24513596

RESUMO

The electrochemical activity and durability of Pt nanoparticles on different kinds of carbon supports in oxygen reduction reactions (ORR) were investigated using rotating disc electrodes (RDE) and the membrane electrode assemblies (MEA) of polymer electrolyte fuel cells (PEFC). The mass activity of Pt/C catalysts (ORR activity per 1 mg of Pt) at the RDE decreased, according to the type of carbon support, in the following order; Ketjenblack (KB) > acetylene black (AB) > graphene > multiwall carbon nanotube (MW-CNT) > carbon black (CB), whereas the average size of the Pt nanoparticles and the surface specific activity (ORR activity per electrochemical surface area) did not vary significantly between these carbon supports. These results indicate that the different mass activities of the Pt/C catalysts may originate from the differences in the fraction of Pt on the carbon supports which is available for utilization. The durability of the MEAs of the top two active catalysts Pt/KB and Pt/AB among the five catalysts was examined based on ORR performance, TEM and in situ XAFS. It was found that the performance of the Pt/KB cathode catalyst in PEFC MEA decreased significantly over 500 accelerated durability test (ADT) cycles, whereas the performance of the Pt/AB cathode catalyst in PEFC MEA did not decrease significantly during 500 ADT cycles, it was also found that the Pt/AB possesses 8 times higher durability compared with the Pt/KB. In situ Pt LIII-edge XAFS data in the ADT cycles and stepwise potential operations revealed the different oxidation-reduction behaviors of the Pt nanoparticles on the KB and AB supports. The Pt/KB was oxidized to form surface PtO layers more easily than the Pt/AB in the increasing potential operation from 0.4 VRHE to 1.4 VRHE, and the surface PtO layers of the Pt/AB were reduced to the metallic Pt state more readily than those of the Pt/KB in the decreasing potential operation from 1.4 VRHE to 0.4 VRHE. The XAFS analysis for the Pt valences and the coordination numbers of Pt-O and Pt-Pt demonstrated that the Pt/AB catalyst is more durable than the Pt/KB catalyst in PEFC MEAs.

7.
Angew Chem Int Ed Engl ; 53(51): 14110-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25338523

RESUMO

There is limited information on the mechanism for platinum oxidation and dissolution in Pt/C cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) under the operating conditions though these issues should be uncovered for the development of next-generation PEFCs. Pt species in Pt/C cathode catalyst layers are mapped by a XAFS (X-ray absorption fine structure) method and by a quick-XAFS(QXAFS) method. Information on the site-preferential oxidation and leaching of Pt cathode nanoparticles around the cathode boundary and the micro-crack in degraded PEFCs is provided, which is relevant to the origin and mechanism of PEFC degradation.

8.
Phys Chem Chem Phys ; 15(40): 17208-18, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24013494

RESUMO

We have prepared and characterized a SnO2-decorated Pt-Sn(oxidized)/C cathode catalyst in a polymer electrolyte fuel cell (PEFC). Oxygen reduction reaction (ORR) performance of Pt/C (TEC10E50E) remained almost unchanged or even tended to reduce in repeated I-V load cycles, whereas the I-V load performance of the Pt-Sn(oxidized)/C prepared by controlled oxidation of a Pt-Sn alloy/C sample with the Pt3Sn phase revealed a significant increase with increasing I-V load cycles. The unique increase in the ORR performance of the Pt-Sn(oxidized)/C catalyst was ascribed to a promoting effect of SnO2 nano-islands formed on the surface of Pt3Sn core nanoparticles. Also in a rotating disk electrode (RDE) setup, the mass activity of an oxidized Pt3Sn/C catalyst was initially much lower than that of a Pt/C catalyst, but it increased remarkably after 5000 rectangular durability cycles and became higher than that of the fresh Pt/C. The maximum power density per electrochemical surface area for the Pt-Sn(oxidized)/C catalyst in a PEFC was about 5 times higher than that for the Pt/C catalyst at 0.1-0.8 A cm(-2) of the current density. In situ X-ray absorption near-edge structure (XANES) analysis at the Pt LIII-edge in increasing/decreasing potential operations and at the Sn K-edge in the I-V load cycles revealed a remarkable suppression of Pt oxidation compared with the Pt/C catalyst at higher potentials and no change in the Sn oxidation state, respectively, resulting in higher performance and stability of the Pt-Sn(oxidized)/C catalyst due to the SnO2 nano-islands under the PEFC operation conditions. The SnO2 nano-island decorated Pt-Sn(oxidized)/C catalyst with a Pt3Sn alloy nanostructure is regarded as a promising candidate for a PEFC cathode catalyst.

9.
ACS Appl Mater Interfaces ; 14(5): 6762-6776, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077130

RESUMO

There is little information on the spatial distribution, migration, and valence of Ce species doped as an efficient radical scavenger in a practical polymer electrolyte fuel cell (PEFC) for commercial fuel cell vehicles (FCVs) closely related to a severe reliability issue for long-term PEFC operation. An in situ three-dimensional fluorescence computed tomography-X-ray absorption fine structure (CT-XAFS) imaging technique and an in situ same-view nano-XAFS-scanning electron microscopy (SEM)/energy-dispersive spectrometry (EDS) combination technique were applied for the first time to perform operando spatial visualization and depth-profiling analysis of Ce radical scavengers in a practical PEFC of Toyota MIRAI FCV under PEFC operating conditions. Using these in situ techniques, we successfully visualized and analyzed the domain, density, valence, and migration of Ce scavengers that were heterogeneously distributed in the components of PEFC, such as anode microporous layer, anode catalyst layer, polymer electrolyte membrane (PEM), cathode catalyst layer, and cathode microporous layer. The average Ce valence states in the whole PEFC and PEM were 3.9+ and 3.4+, respectively, and the Ce3+/Ce4+ ratios in the PEM under H2 (anode)-N2 (cathode) at an open-circuit voltage (OCV), H2-air at 0.2 A cm-2, and H2-air at 0.0 A cm-2 were 70 ± 5:30 ± 5%, as estimated by both in situ fluorescence CT-X-ray absorption near-edge spectroscopy (XANES) and nano-XANES-SEM/EDS techniques. The Ce3+ migration rates in the electrolyte membrane toward the anode and cathode electrodes ranged from 0.3 to 3.8 µm h-1, depending on the PEFC operating conditions. Faster Ce3+ migration was not observed with voltage transient response processes by highly time-resolved (100 ms) and spatially resolved (200 nm) nano-XANES imaging. Ce3+ ions were suggested to be coordinated with both Nafion sulfonate (Nfsul) groups and water to form [Ce(Nfsul)x(H2O)y]3+. The Ce migration behavior may also be affected by the spatial density of Ce, interactions of Ce with Nafion, thickness and states of the PEM, and H2O convection, in addition to the PEFC operating conditions. The unprecedented operando imaging of Ce radical scavengers in the practical PEFCs by both in situ three-dimensional (3D) fluorescence CT-XAFS imaging and in situ depth-profiling nano-XAFS-SEM/EDS techniques yields intriguing insights into the spatial distribution, chemical states, and behavior of Ce scavengers under the working conditions for the development of next-generation PEFCs with high long-term reliability and durability.

10.
Dalton Trans ; 50(20): 6811-6822, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33890597

RESUMO

Ultrafine bimetallic Pt-Ni nanoparticles, which catalyze the oxygen reduction reaction (ORR) efficiently, were successfully prepared in hollow porous carbon spheres (HPCSs) under the assistance of organic molecules. 2,2'-Dipyridylamine (dpa) was found to be most effective in preparing homogeneous small Pt-Ni nanoparticles (2.0 ± 0.4 nm) without the phase separation of Pt and Ni during synthesis, and the assistance of the organic molecules was investigated for the alloy nanoparticle formation. The Pt-Ni nanoparticle/HPCS catalyst synthesized in the presence of dpa exhibited remarkable electrochemical performance in the ORR showing a high mass activity of 3.25 ± 0.14 A mg-1Pt at 0.9 VRHE (13.5-fold higher relative to a commercial Pt/C catalyst), a large electrochemical surface area of 105 ± 8 m2 g-1Pt, and high durability. After 60 000 cycles of accelerated durability testing, the mass activity was still 12.3 times higher than that of the commercial Pt/C catalyst.

11.
ACS Appl Mater Interfaces ; 12(2): 2299-2312, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841306

RESUMO

In order to obtain a suitable design policy for the development of a next-generation polymer electrolyte fuel cell, we performed a visualization analysis of Pt and Co species following aging and degradation processes in membrane-electrode assembly (MEA), using a same-view. Nano-X-ray absorption fine structure (XAFS)/Scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS) technique that we developed to elucidate durability factors and degradation mechanisms of a MEA Pt3Co/C cathode electrocatalyst with higher activity and durability than a MEA Pt/C. In the MEA Pt3Co/C, after 5000 ADT-rec (rectangle accelerated durability test) cycles, unlike the MEA Pt/C, there was no oxidation of Pt. In contrast, Co oxidized and dissolved over a wide range of the cathode layer (∼70% of the initial Co amount). The larger the size of the cracks and pores in the MEA Pt/C and the smaller the ratio of Pt/ionomer of cracks and pores, the faster the rate of catalyst degradation. In contrast, there was no correlation between the size or Co/ionomer ratio of the cracks and pores and the Co dissolution of the MEA Pt3Co/C. It was shown that Co dissolved in the electrolyte region had an octahedral Co2+-O6 structure, based on a 150 nm × 150 nm nano-XAFS analysis. It was also shown that its existence suppressed the oxidation and dissolution of Pt. The MEA Pt3Co/C after 10,000 ADT-rec cycles had many cracks and pores in the cathode electrocatalyst layer, and about 90% of Co had been dissolved and removed from the cathode layer. We discovered a metallic Pt-Co alloy band in the electrolyte region of 300-400 nm from the cathode edge and square planar Pt2+-O4 species and octahedral Co2+-O6 species in the area between the cathode edge and the Pt-Co band. The transition of Pt and Co chemical species in the Pt3Co/C cathode electrocatalyst in the MEA during the degradation process, as well as a fuel cell deterioration suppression process by Co were visualized for the first time at the nano scale using the same-view nano-XAFS/STEM-EDS combination technique that can measure the MEA under a humid N2 atmosphere while maintaining the working environment for a fuel cell.

12.
ACS Appl Mater Interfaces ; 10(33): 27734-27744, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30044074

RESUMO

It is hard to directly visualize spectroscopic and atomic-nanoscopic information on the degraded Pt/C cathode layer inside polymer electrolyte fuel cell (PEFC). However, it is mandatory to understand the preferential area, sequence, and relationship of the degradations of Pt nanoparticles and carbon support in the Pt/C cathode layer by directly observing the Pt/C cathode catalyst for the development of next-generation PEFC cathode catalysts. Here, the spectroscopic, chemical, and morphological visualization of the degradation of Pt/C cathode electrocatalysts in PEFC was performed successfully by a same-view combination technique of nano-X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM)/scanning TEM-energy-dispersive spectrometry (EDS) under a humid N2 atmosphere. The same-view nano-XAFS and TEM/STEM-EDS imaging of the Pt/C cathode of PEFC after triangular-wave 1.0-1.5 VRHE (startup/shutdown) accelerated durability test (tri-ADT) cycles elucidated the site-selective area, sequence, and relationship of the degradations of Pt nanoparticles and carbon support in the Pt/C cathode layer. The 10 tri-ADT cycles caused a carbon corrosion to reduce the carbon size preferentially in the boundary regions of the cathode layer with both electrolyte and holes/cracks, accompanied with detachment of Pt nanoparticles from the degraded carbon. After the decrease in the carbon size to less than 8 nm by the 20 tri-ADT cycles, Pt nanoparticles around the extremely corroded carbon areas were found to transform and dissolve into oxidized Pt2+-O4 species.

13.
J Phys Chem B ; 110(33): 16559-66, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913790

RESUMO

Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.

14.
J Phys Chem B ; 110(24): 11912-7, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800494

RESUMO

We have modeled temporal potential oscillations during the electrooxidation of formic acid on platinum on the basis of the experimental results obtained by time-resolved surface-enhanced infrared absorption spectroscopy (J. Phys. Chem. B 2005, 109, 23509). The model was constructed within the framework of the so-called dual-path mechanism; a direct path via a reactive intermediate and an indirect path via strongly bonded CO formed by dehydration of formic acid. The model differs from earlier ones in the intermediate in the direct path. The reactive intermediate in this model is formate, and the oxidation of formate to CO2 is rate-determining. The reaction rate of the latter process is represented by a second-order rate equation. Simulations using this model well reproduce the experimentally observed oscillation patterns and the temporal changes in the coverages of the adsorbed formate and CO. Most properties of the voltammetric behavior of formic acid, including the potential dependence of adsorbate coverages and a negative differential resistance, are also reproduced.

16.
J Phys Chem B ; 109(49): 23509-16, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16375325

RESUMO

The mechanism of temporal potential oscillations that occur during galvanostatic formic acid oxidation on a Pt electrode has been investigated by time-resolved surface-enhanced infrared absorption spectroscopy (SEIRAS). Carbon monoxide (CO) and formate were found to adsorb on the surface and change their coverages synchronously with the temporal potential oscillations. Isotopic solution exchange (from H13COOH to H12COOH) and potential step experiments revealed that the oxidation of formic acid proceeds dominantly through adsorbed formate and the decomposition of formate to CO2 is the rate-determining step of the reaction. Adsorbed CO blocks the adsorption of formate and also suppresses the decomposition of formate to CO2, which raises the potential to maintain the applied current. The oxidative removal of CO at a high limiting potential increases the coverage of formate and accelerates the decomposition of formate, resulting in a potential drop and leading to the formation of CO. This cycle repeats itself to give the sustained temporal potential oscillations. The oscillatory dynamics can be explained by using a nonlinear rate equation originally proposed to explain the decomposition of formate and acetate on transition metal surfaces in UHV.

17.
J Phys Chem Lett ; 6(11): 2121-6, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266513

RESUMO

We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.

19.
Phys Chem Chem Phys ; 10(25): 3662-9, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18563227

RESUMO

A mechanistic study of electrocatalytic oxidation of formic acid on Pd in sulfuric and perchloric acids is reported. Surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) shows the adsorption of CO, bridge-bonded formate, bicarbonate, and supporting anions on the electrode surface. Poisoning of the Pd surface by CO, formed by dehydration of formic acid, is very slow and scarcely affects formic acid oxidation. The anions are adsorbed more strongly in the order of (bi)sulfate > bicarbonate > perchlorate, among which the most strongly adsorbed (bi)sulfate considerably suppresses formic acid oxidation in the double layer region. The oxidation is suppressed also at higher potentials in both acids by the oxidation of the Pd surface. Adsorbed formate is detected only when formic acid oxidation is suppressed. The results show that formate is a short-lived reactive intermediate in formic acid oxidation and is hence detected when its decomposition yielding CO(2) is suppressed. The high electrocatalytic activity of Pd can be ascribed to the high tolerance to CO contamination and also high catalytic activity toward formate decomposition.


Assuntos
Ácidos/química , Formiatos/química , Paládio/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Oxirredução , Percloratos/química , Espectrofotometria Infravermelho/métodos , Ácidos Sulfúricos/química , Água/química
20.
Phys Chem Chem Phys ; 10(25): 3712-21, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18563232

RESUMO

Pt nanoparticles having the same size ( approximately 10 nm) but different shapes (cubic or octahedral/tetrahedral), as determined by transmission electron microscopy, were synthesized via a polyol-based synthetic procedure. Their respective electrocatalytic activities for methanol oxidation were characterized by cyclic voltammetry and chronoamperometry in both sulfuric and perchloric acid electrolytes, which showed clear shape (surface orientation) dependences. Furthermore, the octahedral/tetrahedral Pt nanoparticles displayed an unexpectedly large enhancement in methanol electro-oxidation activity; about 3-fold increase in transient intrinsic activity and 10-fold increase in CO tolerance steady-state activity when compared to commercial Pt black. Gaseous and methanolic CO adsorption on the synthesized nanoparticles were also investigated by surface-enhanced IR absorption spectroscopy in perchloric acid electrolyte, which suggested that the different trends observed might be related to the electronic effects specific to a given ensemble of the nanofacets.


Assuntos
Nanopartículas Metálicas/química , Metanol/química , Platina/química , Monóxido de Carbono/química , Catálise , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Transmissão , Oxirredução , Tamanho da Partícula , Percloratos/química , Hidróxido de Sódio/química , Espectrofotometria Infravermelho/métodos , Ácidos Sulfúricos/química , Propriedades de Superfície , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA