Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29229769

RESUMO

In the earliest stages of animal development following fertilization, maternally deposited mRNAs direct biological processes to the point of zygotic genome activation (ZGA). These maternal mRNAs undergo cytoplasmic polyadenylation (CPA), suggesting translational control of their activation. To elucidate the biological role of CPA during embryogenesis, we performed genome-wide polysome profiling at several stages of zebrafish development. Our analysis revealed a correlation between CPA and polysome-association dynamics, demonstrating a coupling of translation to the CPA of maternal mRNAs. Pan-embryonic CPA inhibition disrupted the maternal-to-zygotic transition (MZT), causing a failure of developmental progression beyond the mid-blastula transition and changes in global gene expression that indicated a failure of ZGA and maternal mRNA clearance. Among the genes that were differentially expressed were those encoding chromatin modifiers and key transcription factors involved in ZGA, including nanog, pou5f3 and sox19b, which have distinct CPA dynamics. Our results establish the necessity of CPA for ensuring progression of the MZT. The RNA-seq data generated in this study represent a valuable zebrafish resource for the discovery of novel elements of the early embryonic transcriptome.


Assuntos
Citoplasma/metabolismo , Poliadenilação/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Zigoto/metabolismo , Animais , Feminino , RNA Mensageiro/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Zigoto/citologia
2.
J Allergy Clin Immunol ; 146(3): 606-620.e12, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32088305

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Skin barrier defects contribute to disease initiation and development; however, underlying mechanisms remain elusive. OBJECTIVE: To understand the underlying cause of barrier defect, we investigated aberrant expression of specific microRNAs (miRNAs) in AD. Delineating the molecular mechanism of dysregulated miRNA network, we focused on identification of specific drugs that can modulate miRNA expression and repair the defective barrier in AD. METHODS: A screen for differentially expressed miRNAs between healthy skin and AD lesional skin resulted in the identification of miR-335 as the most consistently downregulated miRNA in AD. Using in silico prediction combined with experimental validation, we characterized downstream miR-335 targets and elucidated the molecular pathways by which this microRNA maintains epidermal homeostasis in healthy skin. RESULTS: miR-335 was identified as a potent inducer of keratinocyte differentiation; it exerts this effect by directly repressing SOX6. By recruiting SMARCA complex components, SOX6 suppresses epidermal differentiation and epigenetically silences critical genes involved in keratinocyte differentiation. In AD lesional skin, miR-335 expression is aberrantly lost. SOX6 is abnormally expressed throughout the epidermis, where it impairs skin barrier development. We demonstrate that miR-335 is epigenetically regulated by histone deacetylases; a screen for suitable histone deacetylase inhibitors identified belinostat as a candidate drug that can restore epidermal miR-335 expression and rescue the defective skin barrier in AD. CONCLUSION: Belinostat is of clinical significance not only as a candidate drug for AD treatment, but also as a potential means of stopping the atopic march and further progression of this systemic allergic disease.


Assuntos
Dermatite Atópica/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , MicroRNAs/genética , Fatores de Transcrição SOXD/metabolismo , Pele/metabolismo , Sulfonamidas/farmacologia , Linhagem Celular , Dermatite Atópica/genética , Humanos , Fatores de Transcrição SOXD/genética
3.
Nucleic Acids Res ; 46(1): 336-349, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29136251

RESUMO

MicroRNA-138 (miR-138) is a pro-survival oncomiR for glioma stem cells. In malignant gliomas, dysregulated expression of microRNAs, such as miR-138, promotes Tumour initiation and progression. Here, we identify the ancillary role of the CCAAT/enhancer binding protein ß (C/EBPß) as a transcriptional activator of miR-138. We demonstrate that a short 158 bp DNA sequence encoding the precursor of miR-138-2 is essential and sufficient for transcription of miR-138. This short sequence includes the A-box and B-box elements characteristic of RNA Polymerase III (Pol III) promoters, and is also directly bound by C/EBPß via an embedded 'C/EBPß responsive element' (CRE). CRE and the Pol III B-box element overlap, suggesting that C/EBPß and transcription factor 3C (TFIIIC) interact at the miR-138-2 locus. We propose that this interaction is essential for the recruitment of the RNA Pol III initiation complex and associated transcription of the oncomiR, miR-138 in malignant gliomas.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Glioma/genética , MicroRNAs/genética , RNA Polimerase III/metabolismo , Transcrição Gênica , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Oncogenes/genética , Ligação Proteica , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Nature ; 495(7439): 103-6, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23395958

RESUMO

Post-transcriptional switches are flexible effectors of dynamic changes in gene expression. Here we report a new post-transcriptional switch that dictates the spatiotemporal and mutually exclusive expression of two alternative gene products from a single transcript. Expression of primate-specific exonic microRNA-198 (miR-198), located in the 3'-untranslated region of follistatin-like 1 (FSTL1) messenger RNA, switches to expression of the linked open reading frame of FSTL1 upon wounding in a human ex vivo organ culture system. We show that binding of a KH-type splicing regulatory protein (KSRP, also known as KHSRP) to the primary transcript determines the fate of the transcript and is essential for the processing of miR-198: transforming growth factor-ß signalling switches off miR-198 expression by downregulating KSRP, and promotes FSTL1 protein expression. We also show that FSTL1 expression promotes keratinocyte migration, whereas miR-198 expression has the opposite effect by targeting and inhibiting DIAPH1, PLAU and LAMC2. A clear inverse correlation between the expression pattern of FSTL1 (pro-migratory) and miR-198 (anti-migratory) highlights the importance of this regulatory switch in controlling context-specific gene expression to orchestrate wound re-epithelialization. The deleterious effect of failure of this switch is apparent in non-healing chronic diabetic ulcers, in which expression of miR-198 persists, FSTL1 is absent, and keratinocyte migration, re-epithelialization and wound healing all fail to occur.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , RNA Mensageiro/genética , Transcrição Gênica/genética , Cicatrização/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Éxons/genética , Proteínas Relacionadas à Folistatina/biossíntese , Forminas , Humanos , Técnicas In Vitro , Queratinócitos/citologia , Queratinócitos/metabolismo , Laminina/antagonistas & inibidores , Laminina/metabolismo , Fases de Leitura Aberta/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Pele/citologia , Pele/lesões , Pele/metabolismo , Pele/patologia , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
BMC Genomics ; 15 Suppl 9: S7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522241

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. RESULTS: We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. CONCLUSIONS: Our findings greatly extend the number of noncoding RNAs functionally implicated in tumor development and patient treatment and highlight their role as potential prognostic biomarkers of neuroblastomas.


Assuntos
Biomarcadores Tumorais/genética , Progressão da Doença , Perfilação da Expressão Gênica , Família Multigênica/genética , Neuroblastoma/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Humanos , Anotação de Sequência Molecular , Neuroblastoma/diagnóstico , Neuroblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
6.
Int J Pharm ; : 124435, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986965

RESUMO

RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.

7.
Adv Sci (Weinh) ; 11(26): e2401939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704700

RESUMO

Obesity is a multifactorial disease that is part of today's epidemic and also increases the risk of other metabolic diseases. Long noncoding RNAs (lncRNAs) provide one tier of regulatory mechanisms to maintain metabolic homeostasis. Although lncRNAs are a significant constituent of the mammalian genome, studies aimed at their metabolic significance, including obesity, are only beginning to be addressed. Here, a developmentally regulated lncRNA, termed as obesity related (Obr), whose expression in metabolically relevant tissues such as skeletal muscle, liver, and pancreas is altered in diet-induced obesity, is identified. The Clone 9 cell line and high-fat diet-induced obese Wistar rats are used as a model system to verify the function of Obr. By using stable expression and antisense oligonucleotide-mediated downregulation of the expression of Obr followed by different molecular biology experiments, its role in lipid metabolism is verified. It is shown that Obr associates with the cAMP response element-binding protein (Creb) and activates different transcription factors involved in lipid metabolism. Its association with the Creb histone acetyltransferase complex, which includes the cAMP response element-binding protein (CBP) and p300, positively regulates the transcription of genes involved in lipid metabolism. In addition, Obr is regulated by Pparγ in response to lipid accumulation.


Assuntos
Epigênese Genética , Metabolismo dos Lipídeos , Obesidade , RNA Longo não Codificante , Ratos Wistar , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metabolismo dos Lipídeos/genética , Ratos , Obesidade/genética , Obesidade/metabolismo , Epigênese Genética/genética , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Masculino
8.
Neuromolecular Med ; 25(4): 644-649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684514

RESUMO

Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.


Assuntos
Catecol O-Metiltransferase , Síndrome do Cromossomo X Frágil , Animais , Humanos , Camundongos , Catecol O-Metiltransferase/genética , Dopamina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Neurônios/metabolismo
9.
Dermatol Ther (Heidelb) ; 11(3): 655-660, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33852133

RESUMO

Atopic dermatitis (AD) is a highly prevalent chronic inflammatory skin disease that is characterized by intense pruritus, seriously affecting patients' quality of life. Its pathophysiology, which involves both the adaptive and innate immune responses as well as skin barrier defects, is still poorly understood. We recently identified a microRNA, miR-335, as a key driver of keratinocyte differentiation and cornification, which is essential for the establishment of a healthy skin barrier. However, expression of miR-335 is lost in AD, leading to barrier defect. We further demonstrated how belinostat, a histone deacetylase inhibitor, can effectively restore miR-335 and resolve the barrier defect in a dry skin model. Here, in this commentary, we highlight the role of belinostat in the treatment of AD and discuss the need for more research into crosstalk between epigenetic and non-coding RNA-based regulation, as well as possible therapeutic strategies targeting the epigenome.

10.
Am J Cancer Res ; 11(10): 4981-4993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765305

RESUMO

Squamous cell carcinoma (SCC) is a lethal malignancy with a high propensity for metastasis. Follistatin-like 1 (FSTL1), a pro-metastatic glycoprotein, is absent from healthy epithelia and aberrantly upregulated in SCC. The FSTL1 transcript encodes two alternative gene products whose dominance is post-transcriptionally regulated via a bistable switch. In healthy epithelia, FSTL1 mRNA is destabilized by binding of KH-type splicing regulatory protein (KSRP), and processed as a primary microRNA encoding miR-198. In SCC, KSRP downregulation terminates miR-198 processing, enabling FSTL1 translation. Here, we identify HuR (Human Antigen R) as an upstream regulator of FSTL1 and describe how downregulation of KSRP is permissive, but not sufficient, to promote sustained FSTL1 expression. Moreover, we demonstrate how the interplay between two RNA-binding proteins controls the translation of pro-oncogenic FSTL1. Increased expression of HuR in SCC outcompetes KSRP and enhances FSTL1 transcript stability, enabling persistent FSTL1 expression and activation of downstream metastatic pathways.

11.
Methods Mol Biol ; 2218: 367-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606246

RESUMO

The study of translational regulation requires reliable measurement of both mRNA levels and protein synthesis. Cytoplasmic polyadenylation is a prevalent mode of translational regulation during oogenesis and early embryogenesis. Here the length of the poly(A) tail of an mRNA is coupled to its translatability. We describe a protocol to identify translationally regulated genes and measure their translation rate in the early zebrafish embryo using genome-wide polysome profiling. This protocol relies on the isolation of mRNA by means of an rRNA depletion strategy, which avoids capture bias due to short poly(A) tail that can occur when using conventional oligo(dT)-based methods. We also present a simple PCR-based method to measure the poly(A) tail length of selected mRNAs.


Assuntos
Biossíntese de Proteínas/genética , Peixe-Zebra/genética , Animais , Citoplasma/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Oócitos/fisiologia , Oogênese/genética , Poli A/genética , Poliadenilação/genética , RNA Mensageiro Estocado
12.
Cell Death Dis ; 11(8): 669, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820148

RESUMO

WBP2 transcription coactivator is an emerging oncoprotein and a key node of convergence between EGF and Wnt signaling pathways. Understanding how WBP2 is regulated has important implications for cancer therapy. WBP2 is tightly controlled by post-translational modifications, including phosphorylation and ubiquitination, leading to changes in subcellular localization, protein-protein interactions, and protein turnover. As the function of WBP2 is intricately linked to YAP and TAZ, we hypothesize that WBP2 is negatively regulated by the Hippo tumor suppressor pathway. Indeed, MST is demonstrated to negatively regulate WBP2 expression in a kinase-dependent but LATS-independent manner. This was observed in the majority of the breast cancer cell lines tested. The effect of MST was enhanced by SAV and concomitant with the inhibition of the transcription co-activation, in vitro and in vivo tumorigenesis activities of WBP2, resulting in good prognosis in xenografts. Downregulation of WBP2 by MST involved miRNA but not proteasomal or lysosomal degradation. Our data support the existence of a novel MST-Dicer signaling axis, which in turn regulates both WBP2 CDS- and UTR-targeting miRNAs expression, including miR-23a. MiR-23a targets the 3'UTR of WBP2 mRNA directly. Significant inverse relationships between WBP2 and MST or miR23a expression levels in clinical specimens were observed. In conclusion, WBP2 is a target of the Hippo/MST kinase; MST is identified as yet another rheostat in the regulation of WBP2 and its oncogenic function. The findings have implications in targeted therapeutics and precision medicine for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Via de Sinalização Hippo , Humanos , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Oncogênicas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Ribonuclease III/genética , Transdução de Sinais/genética , Transativadores/fisiologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
13.
Biol Psychiatry ; 88(6): 500-511, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653109

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes Induzidas , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Neurônios
14.
Nat Commun ; 11(1): 1312, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161263

RESUMO

The emergence of small open reading frame (sORF)-encoded peptides (SEPs) is rapidly expanding the known proteome at the lower end of the size distribution. Here, we show that the mitochondrial proteome, particularly the respiratory chain, is enriched for small proteins. Using a prediction and validation pipeline for SEPs, we report the discovery of 16 endogenous nuclear encoded, mitochondrial-localized SEPs (mito-SEPs). Through functional prediction, proteomics, metabolomics and metabolic flux modeling, we demonstrate that BRAWNIN, a 71 a.a. peptide encoded by C12orf73, is essential for respiratory chain complex III (CIII) assembly. In human cells, BRAWNIN is induced by the energy-sensing AMPK pathway, and its depletion impairs mitochondrial ATP production. In zebrafish, Brawnin deletion causes complete CIII loss, resulting in severe growth retardation, lactic acidosis and early death. Our findings demonstrate that BRAWNIN is essential for vertebrate oxidative phosphorylation. We propose that mito-SEPs are an untapped resource for essential regulators of oxidative metabolism.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Acidose Láctica/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Transtornos do Crescimento/genética , Humanos , Masculino , Metabolômica , Proteínas Mitocondriais/genética , Modelos Animais , Modelos Biológicos , Fases de Leitura Aberta/genética , Peptídeos/genética , Proteômica , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
15.
Sci Rep ; 9(1): 12718, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481748

RESUMO

Breast cancer manifests as a spectrum of subtypes with distinct molecular signatures, and different responses to treatment. Of these subtypes, triple-negative breast cancer (TNBC) has the worst prognoses and limited therapeutic options. Here we report aberrant expression of microRNA-138 (miR-138) in TNBC. Increased miR-138 expression is highly specific to this subtype, correlates with poor prognosis in patients, and is functionally relevant to cancer progression. Our findings establish miR-138 as a specific diagnostic and prognostic biomarker for TNBC. OncomiR-138 is pro-survival; sequence-specific miR-138 inhibition blocks proliferation, promotes apoptosis and inhibits tumour growth in-vivo. miR-138 directly targets a suite of pro-apoptotic and tumour suppressive genes, including tumour suppressor candidate 2 (TUSC2). miR-138 silences TUSC2 by binding to a unique 5'-UTR target-site, which overlaps with the translation start-site of the transcript. Over-expression of TUSC2 mimics the phenotype of miR-138 knockdown and functional rescue experiments confirm that TUSC2 is a direct downstream target of miR-138. Our report of miR-138 as an oncogenic driver in TNBC, positions it as a viable target for oligonucleotide therapeutics and we envision the potential value of using antimiR-138 as an adjuvant therapy to alleviate this therapeutically intractable cancer.


Assuntos
Biomarcadores Tumorais , Carcinogênese , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Neoplásico , Neoplasias de Mama Triplo Negativas , Proteínas Supressoras de Tumor , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
17.
Mol Cell Oncol ; 5(6): e1432255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525085

RESUMO

Wound healing is a dynamic event where barrier disruption is transient and miR-198/FSTL1 molecular switch orchestrate wound re-epithelialization. However, epithelial carcinomas maintain a prolonged wound-healing phase to promote malignant transformation. Delineating the molecular mechanism we demonstrate, how epidermal growth factor (EGF) hijacks the wound-healing switch to promote metastasis of carcinoma.

18.
FEBS J ; 285(24): 4516-4534, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29905002

RESUMO

Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.


Assuntos
Neoplasias/fisiopatologia , Cicatrização , Animais , Humanos , Transdução de Sinais
19.
Stem Cell Res Ther ; 9(1): 97, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29631608

RESUMO

BACKGROUND: Commitment of pluripotent stem cells into differentiated cells and associated gene expression necessitate specific epigenetic mechanisms that modify the DNA and corresponding histone proteins to render the chromatin in an open or closed state. This in turn dictates the associated genetic machinery, including transcription factors, acknowledging the cellular signals provided. Activating histone methyltransferases represent crucial enzymes in the epigenetic machinery that cause transcription initiation by delivering the methyl mark on histone proteins. A number of studies have evidenced the vital role of one such histone modifier, DOT1L, in transcriptional regulation. Involvement of DOT1L in differentiating pluripotent human embryonic stem (hES) cells into the cardiac lineage has not yet been investigated. METHODS: The study was conducted on in-house derived (KIND1) and commercially available (HES3) human embryonic stem cell lines. Chromatin immunoprecipitation (ChIP) was performed followed by sequencing to uncover the cardiac genes harboring the DOT1L specific mark H3K79me2. Following this, dual immunofluorescence was employed to show the DOT1L co-occupancy along with the cardiac progenitor specific marker. DOT1L was knocked down by siRNA to further confirm its role during cardiac differentiation. RESULTS: ChIP sequencing revealed a significant number of peaks characterizing H3K79me2 occupancy in the proximity of the transcription start site. This included genes like MYOF, NR2F2, NKX2.5, and HAND1 in cardiac progenitors and cardiomyocytes, and POU5F1 and NANOG in pluripotent hES cells. Consistent with this observation, we also show that DOT1L co-localizes with the master cardiac transcription factor NKX2.5, suggesting its direct involvement during gene activation. Knockdown of DOT1L did not alter the pluripotency of hES cells, but it led to the disruption of cardiac differentiation observed morphologically as well as at transcript and protein levels. CONCLUSIONS: Collectively, our data suggests the crucial role of H3K79me2 methyltransferase DOT1L for activation of NKX2.5 during the cardiac differentiation of hES cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Metiltransferases/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Histona-Lisina N-Metiltransferase , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metiltransferases/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
20.
Nat Commun ; 9(1): 100, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311615

RESUMO

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3'UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Telomerase/biossíntese , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA