Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(2): e2766, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268592

RESUMO

Several environmental policies strive to restore impaired ecosystems and could benefit from a consistent and transparent process-codeveloped with key stakeholders-to prioritize impaired ecosystems for restoration activities. The Clean Water Act, for example, establishes reallocation mechanisms to transfer ecosystem services from sites of disturbance to compensation sites to offset aquatic resource functions that are unavoidably lost through land development. However, planning for the prioritization of compensatory mitigation areas is often hampered by decision-making processes that fall into a myopic decision frame because they are not coproduced with stakeholders. In this study, we partnered with domain experts from the North Carolina Division of Mitigation Services to codevelop a real-world decision framework to prioritize catchments by potential for the development of mitigation projects following principles of a structured decision-making process and knowledge coproduction. Following an iterative decision analysis cycle, domain experts revised foundational components of the decision framework and progressively added complexity and realism as they gained additional insights or more information became available. Through the course of facilitated in-person and remote interactions, the codevelopment of a decision framework produced three main "breakthroughs" from the perspective of the stakeholder group: (a) recognition of the problem as a multiobjective decision driven by several values in addition to biogeophysical goals (e.g., functional uplift, restoring or enhancing lost functionality of ecosystems); (b) that the decision comprises a linked and sequential planning-to-implementation process; and (c) future risk associated with land-use and climate change must be considered. We also present an interactive tool for "on-the-fly" assessment of alternatives and tradeoff analysis, allowing domain experts to quickly test, react to, and revise prioritization strategies. The decision framework described in this study is not limited to the prioritization of compensatory mitigation activities across North Carolina but rather serves as a framework to prioritize a wide range of restoration, conservation, and resource allocation activities in similar environmental contexts across the nation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , North Carolina , Política Ambiental
2.
Sci Total Environ ; 862: 160834, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509279

RESUMO

Land conversion and climate change are stressing freshwater resources. Riparian areas, streamside vegetation/forest land, are critical for regulating hydrologic processes and riparian buffers are used as adaptive management strategies for mitigating land conversion effects. However, our ability to anticipate the efficacy of current and alternative riparian buffers under changing conditions remains limited. To address this information gap, we simulated hydrologic responses for different levels of buffer protection under a future scenario of land/climate change through the year 2060. We used the Soil and Water Assessment Tool (SWAT) to project future streamflow in the Upper Neuse River watershed in North Carolina, USA. We tested the capacity of riparian buffers to mitigate the effects of future land use and climate change on daily mean streamflow under three buffer treatments: present buffer widths and fully forested 15 m and 30 m buffers throughout the basin. The treatments were tested using a combination of a future climate change scenario and landcover projections that indicated a doubling of low-intensity development between 2017 and 2060. In areas with >50 % development, the 30 m buffers were particularly effective at increasing average daily streamflow during the lowest flow events by 4 % and decreasing flow during highest flow events by 3 % compared to no buffer protection. In areas between 20 and 50 % development, both 15 m and 30 m buffers reduced low flow by 8 % with minimal effects on high flow. Results indicate that standardized buffers might be more effective at a local scale with further research needing to focus on strategic buffer placement at the watershed scale. These findings highlight a novel approach for integrating buffers into hydrologic modeling and potential for improved methodology. Understanding the effects of riparian buffers on streamflow is crucial given the pressing need to develop innovative strategies that promote the conservation of invaluable ecosystem services.


Assuntos
Ecossistema , Florestas , Solo , Rios , Mudança Climática
3.
Sci Rep ; 13(1): 18869, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914805

RESUMO

Impacts of sea level rise will last for centuries; therefore, flood risk modeling must transition from identifying risky locations to assessing how populations can best cope. We present the first spatially interactive (i.e., what happens at one location affects another) land change model (FUTURES 3.0) that can probabilistically predict urban growth while simulating human migration and other responses to flooding, essentially depicting the geography of impact and response. Accounting for human migration reduced total amounts of projected developed land exposed to flooding by 2050 by 5%-24%, depending on flood hazard zone (50%-0.2% annual probability). We simulated various "what-if" scenarios and found managed retreat to be the only intervention with predicted exposure below baseline conditions. In the business-as-usual scenario, existing and future development must be either protected or abandoned to cope with future flooding. Our open framework can be applied to different regions and advances local to regional-scale efforts to evaluate potential risks and tradeoffs.

4.
Front Plant Sci ; 12: 606908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995428

RESUMO

Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.

5.
Sci Total Environ ; 730: 139050, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32402968

RESUMO

Urban growth and climate change together complicate planning efforts meant to adapt to increasingly scarce water supplies. Several studies have independently examined the impacts of urban planning and climate change on water demand, but little attention has been given to their combined impact. Here we forecast urban water demand using a Geographically Weighted Regression model informed by socio-economic, environmental and landscape pattern metrics. The purpose of our study is to evaluate how future scenarios of population densities and climate warming will jointly affect water demand across two rapidly growing U.S. states (North Carolina and South Carolina). Our forecasts indicate that regional water demand by 2065 will increase by 37%-383% relative to the baseline in 2010, across all scenarios of change. Our results show future water demand will increase under rising temperatures, but could be ameliorated by policies that promote higher density development and urban infill. These water-efficient land use policies show a 5% regional reduction in water demand and up to 25% reduction locally for counties with the highest expected population growth by 2065. For rural counties experiencing depopulation, the land use policies we considered are insufficient to significantly reduce water demand. For expanding communities seeking to increase their adaptive capacity to changing socio-environmental conditions, our framework can assist in developing sustainable solutions.

6.
Environ Pollut ; 260: 114075, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32014753

RESUMO

This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384), 2009 (521), and 2018 (421) for heavy metals of As, Cr, Cd, Cu, Hg, Ni, Pb and Zn. Multiple pollution indices and Structural Equation Models (SEMs) were used in attribution analysis and comprehensive assessments. Data showed that majority of the sampling sites was contaminated by one or more heavy metals, but pollutant concentrations had not reached levels of concerns for food security or human health. There was an increasing trend in heavy metal contamination over time and the variations of soil contamination were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped with highly industrialized and populated areas in western part of the study region. A dozen SEMs path analyses were used to compare the relative influences of key environmental factors on soil contamination across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were primarily affected by soil properties during the study period, except 1989-2005, followed by land use patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and overall soil pollution during 1989-2005. We hypothesized that other factors not considered in the present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also important to explain the variability of soil contamination. This study implied that strategies to improve soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil contamination. Future studies should monitor pollutant sources identified by this study to fully understand the causes of heavy metal contamination in rapidly industrialized regions in southern China.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Urbanização/tendências , China , Humanos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA