Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 29(8): 2654-2664, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29979588

RESUMO

Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.


Assuntos
Aminas/química , Elastina/química , Metais/química , Compostos Orgânicos/química , Polímeros/química , Piridinas/química , Solventes/química , Eletroforese em Gel de Poliacrilamida , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Multimerização Proteica , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrofotometria Ultravioleta
2.
BMC Microbiol ; 13: 270, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24279426

RESUMO

BACKGROUND: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes. METHODS: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing. RESULTS: We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance (<0.2%) leads to complete (>99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (<68%). We show that specific antibodies can be selected against L. acidophilus when the monoculture is used as antigen as well as when a community of 10 closely related species is used demonstrating that in principal antibodies can be generated against individual organisms within microbial communities. CONCLUSIONS: The approach presented here demonstrates that phage-selected antibodies against bacteria enable identification, enrichment of rare species, and depletion of abundant organisms making it tractable to virtually any microbe or microbial community. Combining antibody specificity with FACS provides a new approach for characterizing and manipulating microbial communities prior to genome sequencing.


Assuntos
Anticorpos Antibacterianos/metabolismo , Carga Bacteriana/métodos , Citometria de Fluxo/métodos , Lactobacillus acidophilus/isolamento & purificação , Microbiota , Análise de Sequência de DNA/métodos , Anticorpos de Cadeia Única/metabolismo , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/isolamento & purificação , Técnicas de Visualização da Superfície Celular , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/imunologia , Dados de Sequência Molecular , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/isolamento & purificação
3.
Anal Chem ; 84(21): 9169-75, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23066794

RESUMO

Analytical capabilities to identify dyes associated with structurally robust wool fibers would critically assist crime-scene and explosion-scene forensics. Nondestructive separation of dyes from wool, removal of contaminants, and dye analysis by MALDI- or ESI-MS, were achieved in a single-pot, ionic liquid-based method. Ionic liquids (ILs) that readily denature the wool α-keratin structure have been identified and are conducive to small volume, high-throughput analysis for accelerated threat-response times. Wool dyed with commercial or natural, plant-based dyes have unique signatures that allow classification and matching of samples and identification of dyestuffs. Wool released 0.005 mg of dye per mg of dyed wool into the IL, allowing for analysis of single-thread sample sizes. The IL + dye mixture promotes sufficient ionization in MALDI-MS: addition of common MALDI matrices does not improve analysis of anionic wool dyes. An inexpensive, commercially available tetrabutylphosponium chloride IL was discovered to be capable of denaturing wool and was determined to be the most effective for this readily fieldable method.


Assuntos
Corantes/análise , Corantes/isolamento & purificação , Líquidos Iônicos/química , Lã/química , Animais , Corantes/química , Limite de Detecção , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Anal Chem ; 83(8): 2921-30, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21410201

RESUMO

Room temperature ionic liquids, or RTILs, based on tetraalkylphosphonium (PR(4)(+)) cations were used as the basis of a platform that enables separation of dyes from textiles, extraction of dyes from aqueous solution, and identification of the dyes by MALDI-MS in a single experimental step for forensic purposes. Ionic liquids were formed with PR(4)(+) cations and ferulate (FA), α-cyano-4-hydroxycinnamate (CHCA), and 2,5-dihydroxybenzoate (DHB) anions. The use of tetraalkylphosphonium-based ionic liquids in MALDI-MS allowed detection of small molecule dyes without addition of a traditional solid MALDI matrix.


Assuntos
Corantes/análise , Líquidos Iônicos/química , Compostos Organofosforados/química , Líquidos Iônicos/síntese química , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estereoisomerismo
5.
Toxins (Basel) ; 11(4)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987300

RESUMO

Mycolactone, the amphiphilic macrolide toxin secreted by Mycobacterium ulcerans, plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development. For one, the lipophilic nature of the toxin makes it difficult to handle and store and contributes to variability associated with laboratory experimentation and purification yields. In this manuscript, we have attempted to incorporate our understanding of the lipophilicity of mycolactone in order to define the optimal methods for the storage, handling, and purification of this toxin. We present a systematic correlation of variability associated with measurement techniques (thin-layer chromatography (TLC), mass spectrometry (MS), and UV-Vis spectrometry), storage conditions, choice of solvents, as well as the impact of each of these on toxin function as assessed by cellular cytotoxicity. We also compared natural mycolactone extracted from bacterial culture with synthesized toxins in laboratory (solvents, buffers) and physiologically relevant (serum) matrices. Our results point to the greater stability of mycolactone in organic, as well as detergent-containing, solvents, regardless of the container material (plastic, glass, or silanized tubes). They also highlight the presence of toxin in samples that may be undetectable by any one technique, suggesting that each detection approach captures different configurations of the molecule with varying specificity and sensitivity. Most importantly, our results demonstrate for the very first time that amphiphilic mycolactone associates with host lipoproteins in serum, and that this association will likely impact our ability to study, diagnose, and treat Buruli ulcers in patients.


Assuntos
Toxinas Bacterianas , Macrolídeos , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Toxinas Bacterianas/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Camada Fina , Humanos , Lipoproteínas HDL/química , Lipoproteínas LDL/química , Macrolídeos/química , Macrolídeos/isolamento & purificação , Macrolídeos/toxicidade , Camundongos , Mycobacterium ulcerans , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
6.
J Org Chem ; 73(15): 5759-65, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18582113

RESUMO

The biosynthesis of the 3,4-dihydroxybenzoate moieties of the siderophore petrobactin, produced by B. anthracis str. Sterne, was probed by isotopic feeding experiments in iron-deficient media with a mixture of unlabeled and D-[(13)C6]glucose at a ratio of 5:1 (w/w). After isolation of the labeled siderophore, analysis of the isotopomers was conducted via one-dimensional (1)H and (13)C NMR spectroscopy, as well as (13)C-(13)C DQFCOSY spectroscopy. Isotopic enrichment and (13)C-(13)C coupling constants in the aromatic ring of the isolated siderophore suggested the predominant route for the construction of the carbon backbone of 3,4-DHB (1) involved phosphoenol pyruvate and erythrose-4-phosphate as ultimate precursors. This observation is consistent with that expected if the shikimate pathway is involved in the biosynthesis of these moieties. Enrichment attributable to phosphoenol pyruvate precursors was observed at C1 and C6 of the aromatic ring, as well as into the carboxylate group, while scrambling of the label into C2 was not. This pattern suggests 1 was biosynthesized from early intermediates of the shikimate pathway and not through later shikimate intermediates or aromatic amino acid precursors.


Assuntos
Bacillus anthracis/química , Bacillus anthracis/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ácido Chiquímico/química
7.
Adv Mater ; 28(46): 10250-10256, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27723130

RESUMO

Functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g-1 ), three times higher than that of the graphite anode (372 mAh g-1 ).

8.
PLoS One ; 9(3): e91706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643124

RESUMO

The plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs). In this study we sought to characterize changes to the protein expression profiles in DRMDs and to respective cellular pathways and networks of Mono Mac 6 cells in response to the adherence of rough VTRM1 and smooth 16 M B. melitensis strains. DRMDs were extracted from Mono Mac 6 cells exposed for 2 minutes at 4°C to Brucella (no infection occurs) and from unexposed control cells. Protein expression was determined using the non-gel based quantitative iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) mass spectrometry technique. Using the identified iTRAQ proteins we performed enrichment analyses and probed constructed human biochemical networks for interactions and metabolic reactions. We identified 149 proteins, which either became enriched, depleted or whose amounts did not change in DRMDs upon Brucella exposure. Several of these proteins were distinctly enriched or depleted in DRMDs upon exposure to rough and smooth B. melitensis strains which results in the differential engagement of cellular pathways and networks immediately upon Brucella encounter. For some of the proteins such as myosin 9, small G protein signaling modulator 3, lysine-specific demethylase 5D, erlin-2, and voltage-dependent anion-selective channel protein 2, we observed extreme differential depletion or enrichment in DRMDs. The identified proteins and pathways could provide the basis for novel ways of treating or diagnosing Brucellosis.


Assuntos
Brucella melitensis/química , Interações Hospedeiro-Patógeno , Macrófagos/química , Microdomínios da Membrana/química , Proteínas de Membrana/química , Proteômica , Linhagem Celular , Detergentes/química , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas
9.
Methods Enzymol ; 524: 205-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23498742

RESUMO

From motility of simple protists to determining the handedness of complex vertebrates, highly conserved eukaryotic cilia and flagella are essential for the reproduction and survival of many biological organisms. Despite extensive studies, the exact mechanism by which individual components coordinate their activity to produce ciliary beating patterns remains unknown. We describe a novel approach toward studying ciliary beating. Instead of deconstructing a fully functional organelle from the top-down, we describe a process by which synthetic cilia-like structures are assembled from the bottom-up and we present methods for engineering such structures. We demonstrate how simple mixtures of microtubules, kinesin clusters, and a bundling agent assemble into structures that produce spontaneous oscillations, suggesting that self-organized beating may be a generic feature of internally driven bundles. Synthetic cilia-like structures can be assembled at high density, leading to synchronization and metachronal traveling waves, reminiscent of the waves seen in biological ciliary fields.


Assuntos
Engenharia Celular/métodos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Biotina/química , Bovinos , Movimento Celular , Cílios/química , Cílios/fisiologia , Drosophila , Escherichia coli , Flagelos/química , Flagelos/fisiologia , Cinesinas/química , Cinesinas/genética , Modelos Biológicos , Polietilenoglicóis/química , Polimerização , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem , Estreptavidina/química , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
10.
Science ; 333(6041): 456-9, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21778400

RESUMO

The mechanism that drives the regular beating of individual cilia and flagella, as well as dense ciliary fields, remains unclear. We describe a minimal model system, composed of microtubules and molecular motors, which self-assemble into active bundles exhibiting beating patterns reminiscent of those found in eukaryotic cilia and flagella. These observations suggest that hundreds of molecular motors, acting within an elastic microtubule bundle, spontaneously synchronize their activity to generate large-scale oscillations. Furthermore, we also demonstrate that densely packed, actively bending bundles spontaneously synchronize their beating patterns to produce collective behavior similar to metachronal waves observed in ciliary fields. The simple in vitro system described here could provide insights into beating of isolated eukaryotic cilia and flagella, as well as their synchronization in dense ciliary fields.


Assuntos
Cílios/fisiologia , Cinesinas/metabolismo , Microtúbulos/fisiologia , Proteínas Motores Moleculares/metabolismo , Axonema/fisiologia , Cílios/química , Flagelos/química , Flagelos/fisiologia , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Biológicos , Movimento , Polietilenoglicóis
12.
ACS Appl Mater Interfaces ; 2(3): 738-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356275

RESUMO

We report the synthesis of a series of water-soluble, fluorescent, conjugated polymers via the Gilch reaction with an overall yield greater than 40%. The yield for the Gilch reaction decreases with the increase in the length of the side chain (ethylene glycol repeat units), presumably due to the steric effects inhibiting the linking of monomeric units. The hydrophilic side chain enhances the solubility of the polymer in water and concomitantly leads to a side-chain-dependent conformation and solvent-dependent quantum efficiency. An increase in the ethylene glycol repeat units on the polymer side chain structure results in changes in chain packing; hence, the crystallinity evolves from semicrystalline to liquid crystalline to completely amorphous. An increase in the length of the side chain leads to changes in the polymer-solvent interaction as manifested in the photophysical properties of these polymers. These novel polymers exhibit two glass transition temperatures, which can be readily rationalized by differences in microstructure when casted from hydrophobic and hydrophilic solvents. Cyclic voltammograms of polymer 1d-3d suggest two-electron transfer, as compared to P1 which has one complete redox pair. The potential of having a nanoscaled domain structure and stabilizing two electrons on a polymer chain signifies the potential of these polymers in fabricating electronic and photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA