RESUMO
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
RESUMO
The asymmetric intramolecular aza-Michael reaction (IMAMR) is a very convenient strategy for the generation of heterocycles bearing nitrogen-substituted stereocenters. Due to the ubiquitous presence of these skeletons in natural products, the IMAMR has found widespread applications in the total synthesis of alkaloids and biologically relevant compounds. The development of asymmetric versions of the IMAMR are quite recent, most of them reported in this century. The fundamental advances in this field involve the use of organocatalysts. Chiral imidazolidinones, diaryl prolinol derivatives, Cinchone-derived primary amines and quaternary ammonium salts, and BINOL-derived phosphoric acids account for the success of those methodologies. Moreover, the use of N-sulfinyl imines with a dual role, as nitrogen nucleophiles and as chiral auxiliaries, appeared as a versatile mode of performing the asymmetric IMAMR.
Assuntos
Alcaloides , Iminas , Aminas , EstereoisomerismoRESUMO
A new methodology to access the quinolizidine skeleton in an asymmetric fashion was devised. It involves two consecutive intramolecular aza-Michael reactions of sulfinyl amines bearing a bis-enone moiety, in turn generated by a monodirectional cross metathesis reaction. The sequence, which takes place with excellent yields and diastereocontrol, was applied to the total synthesis of alkaloids lasubine I and myrtine.
RESUMO
The organocatalytic synthesis of indolizinones and pyrrolo-azepinones has been accomplished in a tandem fashion through a sequence that comprises initial cycloaromatization followed by intramolecular Friedel-Crafts alkylation. The process takes place under Brønsted acid catalysis, giving rise to final products in moderate to good yields. Attempts to carry out the tandem protocol in an enantioselective fashion were performed with chiral (R)-BINOL-derived N-triflyl phosphoramides. After initial optimization, the tandem process took place with moderate levels of enantioselectivity.
RESUMO
An organocatalytic enantioselective intramolecular aza-Michael reaction has been described for the first time in a desymmetrization process employing substrates different from cyclohexadienones. By using 9-amino-9-deoxy-epi-hydroquinine as the catalyst and trifluoroacetic acid as a co-catalyst, a series of enantiomerically enriched 2,5-and 2,6-disubstituted piperidines have been obtained in good yields and with moderate diastereoselectivity. Depending on the catalyst/co-catalyst loading ratio, either the major or the minor diastereoisomer of the final piperidine products was achieved with high levels of enantioselectivity. Finally, some mechanistic insights have been considered by means of theoretical calculations which were in agreement with the experimental results obtained in the desymmetrization reaction.
RESUMO
The intramolecular 1,3-dipolar cycloaddition of ortho-substituted 1,1,1-trifluoromethylstyrene-derived nitrones is described. Tricyclic fused isoxazolidines were obtained as major or exclusive products, in contrast to the case for nonfluorinated substrates, which rendered the bridged derivatives. This change in the regioselectivity was attributed to the electronic and, particularly, steric requirements of the trifluoromethyl group in comparison to the methyl group. It is worth mentioning that trifluoromethylstyrenes have been employed for the first time as dipolarophiles in a 1,3-dipolar intramolecular cycloaddition reaction, leading to the corresponding isoxazolidines bearing a quaternary trifluoromethyl moiety. Finally, the synthetic utility of the developed methodology has been illustrated with the synthesis of a family of bicyclic fluorinated 1,3-amino alcohols.
RESUMO
A gold-catalyzed Povarov-type reaction of fluorinated imino esters and furans is described. The process, which takes place in dichoromethane at room temperature, gives rise to novel fluorinated tetrahydrofuran-fused tetrahydroquinolines in good yields and moderate levels of diastereoselectivity in a very simple manner. The reported examples expand the versatility of the Povarov reaction to unprecedented fluorinated substrates, generating scaffolds that contain quaternary α-amino acid units.
RESUMO
A tandem gold-catalyzed hydroamination/formal aza-Diels-Alder reaction is described. This process, which employs quaternary homopropargyl amino ester substrates, leads to the formation of an intrincate tetracyclic framework and involves the generation of four bonds and five stereocenters in a highly diastereoselective manner. Theoretical calculations have allowed us to propose a suitable mechanistic rationalization for the tandem protocol. Additionally, by studying the influence of the ligands on the rate of the gold-catalyzed reactions, it was possible to establish optimum conditions in which to perform the process with a variety of substituents on the amino ester substrates. Notably, the asymmetric version of the tandem reaction was also evaluated.
RESUMO
The synthesis of new fluorinated pyrrolidones starting from unprotected amino esters and amino nitriles through a Michael addition-lactamization sequence is described. The resulting CF3 -containing building blocks, bearing a quaternary stereogenic center adjacent to the fluorinated group, have been converted into amino pyrrolidines that display potent ß-secretase 1 (BACE1) inhibitory activity. This work constitutes an example of selective fluorination as a valid strategy for the modulation of physicochemical and biological properties of lead compounds in drug discovery.
Assuntos
Amidinas/síntese química , Amidinas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/farmacologia , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Ciclização , Descoberta de Drogas , Estrutura Molecular , EstereoisomerismoRESUMO
The organocatalytic intramolecular aza-Michael reaction gives access to enantiomerically enriched nitrogen-containing heterocycles in a very simple manner. Enals, enones, conjugated esters and nitro olefins have been employed as Michael acceptors, while moderate nitrogen nucleophiles such as sulphonamides, carbamates and amides have been shown to be appropriate Michael donors in this type of reaction. Additionally, the process has been performed under both covalent and non-covalent catalysis, with diaryl prolinols, imidazolidinones, thioureas and chiral binol phosphoric acids being the most frequently used catalysts. The level of efficiency reached with this protocol is demonstrated by the implementation of numerous tandem processes, as well as the total synthesis of several natural products.
RESUMO
A new tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM-IMDAR protocols.
RESUMO
Conjugated N-acyl pyrazoles have been successfully employed in the organocatalytic enantioselective intramolecular aza-Michael reaction as ester surrogates. Bifunctional squaramides under microwave irradiation provided the best results in this transformation. Furthermore, this protocol has been combined with a peptide-coupling reaction in a tandem sequence. The final products were easily converted into the corresponding ethyl esters.
Assuntos
Amidas/química , Peptídeos/química , Pirazóis/química , Catálise , Ésteres , Micro-Ondas , Estrutura Molecular , EstereoisomerismoRESUMO
The dual ability of gold salts to act as π- and σâ Lewis acids has been exploited in a tandem self-relay catalysis. Thus, triphenylphosphanegold(I) triflate mediated the intramolecular carbonyl addition of the amide functionality of homoprogargyl amides to a triple bond. The formation of a σâ complex of the gold salt with the intermediate oxazine promoted a nucleophilic addition followed by a Petasis-Ferrier rearrangement. This tandem protocol, catalyzed by the same gold salt under the same reaction conditions, gave rise to the efficient synthesis of 2,3-dihydropyridin-4-(1 H)-ones, which contain a cyclic quaternary α-amino acid unit. The asymmetric version was performed by generating the starting materials from the corresponding sulfinylimines.
RESUMO
The synthesis of enantiomerically pure cis- and trans-2-phenyl-3-(trifluoromethyl)piperazines is described. It involved, as the key step, a diastereoselective nucleophilic addition of the Ruppert-Prakash reagent (TMSCF3) to α-amino sulfinylimines bearing Ellman's auxiliary. This methodology allows an entry into hitherto unknown trifluoromethylated and stereochemically defined piperazines, key scaffold components in medicinal chemistry.
Assuntos
Hidrocarbonetos Fluorados/química , Indicadores e Reagentes/química , Piperazinas/química , Piperazinas/síntese química , Silanos/química , Catálise , Descoberta de Drogas , Estrutura Molecular , EstereoisomerismoRESUMO
Propargylic difluorides 1 were used as starting substrates in a combination of cross-enyne metathesis and Diels-Alder reactions. Thus, the reaction of 1 with ethylene in the presence of 2(nd) generation Hoveyda-Grubbs catalyst generates a diene moiety which in situ reacts with a wide variety of dienophiles giving rise to a small family of new fluorinated carbo- and heterocyclic derivatives in moderate to good yields. This is a complementary protocol to the one previously described by our research group, which involved the use of 1,7-octadiene as an internal source of ethylene.
RESUMO
The enantioselective synthesis of fluorinated indolizidinone derivatives has been developed. The process involved an enantioselective intramolecular aza-Michael reaction of conjugated amides bearing a pendant α,ß-unsaturated ketone moiety, catalyzed by the (S)-TRIP-derived phosphoric acid, followed by dimethyltitanocene methylenation and ring closing metathesis (RCM). Final indolizidine-derived products comprise a fluorine-containing tetrasubstituted double bond generated by the RCM reaction, which is a challenging task. The whole synthetic sequence took place in acceptable overall yields with excellent enantioselectivities.
RESUMO
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
RESUMO
An organocatalytic enantioselective intramolecular aza-Michael reaction of carbamates bearing conjugated ketones as Michael acceptors is described. By using 9-amino-9-deoxy-epi-hydroquinine as the catalyst and pentafluoropropionic acid as a co-catalyst, a series of piperidines, pyrrolidines, and the corresponding benzo-fused derivatives (indolines, isoindolines, tetrahydroquinolines, and tetrahydroisoquinolines) can be obtained in excellent yields and enantioselectivities. In addition, the use of microwave irradiation at 60 °C improves the efficiency of the process giving rise to the final products with comparable yields and enantiomeric excesses. Some mechanistic insights are also considered.
Assuntos
Compostos Aza/química , Alcaloides de Cinchona/química , Cetonas/química , Quinidina/análogos & derivados , Catálise , Micro-Ondas , Estrutura Molecular , Quinidina/química , EstereoisomerismoRESUMO
In this work, we describe the asymmetric synthesis of a series of fluorinated and non-fluorinated quaternary α-amino acid derivatives. This methodology involves the diastereoselective addition of chiral 2-p-tolylsulfinyl benzylcarbanions to either imines containing a 2-furyl moiety or trifluoromethyl α-imino esters. Synthetic practicality of this method is demonstrated by short (two-steps) and convenient preparation of 2-(trifluoromethyl)indoline-2-carboxylates.