Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell ; 183(1): 158-168.e14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979941

RESUMO

SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.


Assuntos
Convalescença , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Adulto , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/patologia , Feminino , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/patologia , SARS-CoV-2
2.
Cell ; 183(7): 1946-1961.e15, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306960

RESUMO

Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL). The most prevalent immune cells in human and non-human primate efferent lymph were T cells. Cytolytic CD8+ T cell subsets with effector-like epigenetic and transcriptional signatures were clonotypically skewed and selectively confined to the intravascular circulation, whereas non-cytolytic CD8+ T cell subsets with stem-like epigenetic and transcriptional signatures predominated in tissues and TDL. Moreover, these anatomically distinct gene expression profiles were recapitulated within individual clonotypes, suggesting parallel differentiation programs independent of the expressed antigen receptor. Our collective dataset provides an atlas of the migratory immune system and defines the nature of tissue-emigrant CD8+ T cells that recirculate via TDL.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Animais , Diferenciação Celular , Células Clonais , Citotoxicidade Imunológica , Epigênese Genética , Humanos , Memória Imunológica , Linfonodos/citologia , Linfonodos/imunologia , Macaca mulatta , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica , Transcriptoma/genética
3.
Immunity ; 55(9): 1732-1746.e5, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35961317

RESUMO

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , RNA Mensageiro/genética , Síndrome , Vacinação , Proteínas do Envelope Viral
4.
J Immunol ; 212(3): 389-396, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117799

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos HLA-DR , Inflamação
5.
J Immunol ; 211(4): 511-517, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549397

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Camundongos , Animais , Humanos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antivirais/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
6.
J Immunol ; 208(5): 1170-1179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35140134

RESUMO

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.


Assuntos
Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Leucocidinas/metabolismo , Células T Invariantes Associadas à Mucosa/patologia , Receptores CCR5/metabolismo , Staphylococcus aureus/patogenicidade , Antagonistas dos Receptores CCR5/farmacologia , Linhagem Celular , Humanos , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária/imunologia , Maraviroc/farmacologia , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Células THP-1 , Fatores de Virulência/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753817

RESUMO

Acute HIV-1 infection (AHI) results in the widespread depletion of CD4+ T cells in peripheral blood and gut mucosal tissue. However, the impact on the predominantly CD4+ immunoregulatory invariant natural killer T (iNKT) cells during AHI remains unknown. Here, iNKT cells from peripheral blood and colonic mucosa were investigated during treated and untreated AHI. iNKT cells in blood were activated and rapidly depleted in untreated AHI. At the time of peak HIV-1 viral load, these cells showed the elevated expression of cell death-associated transcripts compared to preinfection. Residual peripheral iNKT cells suffered a diminished responsiveness to in vitro stimulation early into chronic infection. Additionally, HIV-1 DNA, as well as spliced and unspliced viral RNA, were detected in iNKT cells isolated from blood, indicating the active infection of these cells in vivo. The loss of iNKT cells occurred from Fiebig stage III in the colonic mucosa, and these cells were not restored to normal levels after initiation of ART during AHI. CD4+ iNKT cells were depleted faster and more profoundly than conventional CD4+ T cells, and the preferential infection of CD4+ iNKT cells over conventional CD4+ T cells was confirmed by in vitro infection experiments. In vitro data also provided evidence of latent infection in iNKT cells. Strikingly, preinfection levels of peripheral blood CD4+ iNKT cells correlated directly with the peak HIV-1 load. These findings support a model in which iNKT cells are early targets for HIV-1 infection, driving their rapid loss from circulation and colonic mucosa.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Colo/imunologia , Colo/virologia , Infecções por HIV/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Células T Matadoras Naturais/imunologia , Adolescente , Adulto , Progressão da Doença , Feminino , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Infecção Persistente/imunologia , Infecção Persistente/virologia , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
9.
Eur J Immunol ; 52(3): 462-471, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910820

RESUMO

Herpes simplex virus type 1 (HSV-1) infects and persists in most of the human population. Interleukin-15 (IL-15) has an important role in the activation of cell-mediated immune responses and acts in complex with IL-15 receptor alpha (IL-15R-α) through cell surface transpresentation. Here, we have examined the IL-15/IL-15R-α complex response dynamics during HSV-1 infection in human keratinocytes. Surface expression of the IL-15/IL-15R-α complex rapidly increased in response to HSV-1, reaching a peak around 12 h after infection. This response was dependent on detection of viral replication by TLR3, and enhancement of IL15 and IL15RA gene expression. Beyond the peak of expression, levels of IL-15 and IL-15R-α gradually declined, reaching a profound loss of surface expression beyond 24 h of infection. This involved the loss of IL15 and IL15RA transcription. Interestingly, invariant natural killer T (iNKT) cells inhibited the viral interference with IL-15/IL-15R-α complex expression in an IFNγ-dependent manner. These results indicate that rapid upregulation of the IL-15/IL-15R-α complex occurs in HSV-1 infected keratinocytes, and that this response is targeted by viral interference. Shutdown of the IL-15 axis represents a novel mode of HSV-1 immune evasion, which can be inhibited by the host iNKT cell response.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células T Matadoras Naturais , Humanos , Evasão da Resposta Imune , Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/metabolismo
10.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837225

RESUMO

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Metaboloma/imunologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/complicações , Estudos de Casos e Controles , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Especificidade de Órgãos , Pandemias , Fenótipo , Proteômica , Índice de Gravidade de Doença , Adulto Jovem
11.
Hepatology ; 75(5): 1154-1168, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34719787

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS: MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Extra-Hepáticos , Colangiocarcinoma , Células T Invariantes Associadas à Mucosa , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Humanos , Microambiente Tumoral
12.
Respir Res ; 24(1): 62, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829233

RESUMO

BACKGROUND: COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS: We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS: We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS: This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , COVID-19/complicações , Proteômica , Inflamação/complicações , Biomarcadores
13.
PLoS Biol ; 18(6): e3000644, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511236

RESUMO

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Carbapenêmicos/farmacologia , Citotoxicidade Imunológica , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Granzimas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Anti-Infecciosos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Células HeLa , Humanos , Cinética
14.
J Infect Dis ; 226(8): 1428-1440, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35511032

RESUMO

BACKGROUND: Mucosa-associated invariant T (MAIT) cells are innate-like T cells with specialized antimicrobial functions. Circulating MAIT cells are depleted in chronic human immunodeficiency virus (HIV) infection, but studies examining this effect in peripheral tissues, such as the female genital tract, are lacking. METHODS: Flow cytometry was used to investigate circulating MAIT cells in a cohort of HIV-seropositive (HIV+) and HIV-seronegative (HIV-) female sex workers (FSWs), and HIV- lower-risk women (LRW). In situ staining and quantitative polymerase chain reaction were performed to explore the phenotype of MAIT cells residing in paired cervicovaginal tissue. The cervicovaginal microbiome was assessed by means of 16S ribosomal RNA gene sequencing. RESULTS: MAIT cells in the HIV+ FSW group were low in frequency in the circulation but preserved in the ectocervix. MAIT cell T-cell receptor gene segment usage differed between the HIV+ and HIV- FSW groups. The TRAV1-2-TRAJ20 transcript was the most highly expressed MAIT TRAJ gene detected in the ectocervix in the HIV+ FSW group. MAIT TRAVJ usage was not associated with specific genera in the vaginal microbiome. CONCLUSIONS: MAIT cells residing in the ectocervix are numerically preserved irrespective of HIV infection status and displayed dominant expression of TRAV1-2-TRAJ20. These findings have implications for understanding the role of cervical MAIT cells in health and disease.


Assuntos
Infecções por HIV , Células T Invariantes Associadas à Mucosa , Profissionais do Sexo , Feminino , Infecções por HIV/metabolismo , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Mucosa/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
15.
Mol Med ; 28(1): 54, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562666

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional T cells with innate-like capacity to rapidly respond to microbial infection via MR1-restricted antigen recognition. Emerging evidence indicate that they can also act as rapid sensors of viral infection via innate cytokine activation. However, their possible role in the immune response to mRNA vaccination is unknown. Here, we evaluated the involvement of MAIT cells in individuals vaccinated with the BNT162b2 mRNA SARS-CoV-2 vaccine. MAIT cell levels, phenotype and function in circulation were preserved and unperturbed through day 35 post-vaccination in healthy donor (HD) vaccinees, as well as people living with HIV (PLWH) or with primary immunodeficiency (PID). Unexpectedly, pre-vaccination and post-vaccination levels of MAIT cells correlated positively with the magnitude of the SARS-CoV-2 spike protein-specific CD4 T cell and antibody responses in the HD vaccinees. This pattern was largely preserved in the PID group, but less so in the PLWH group. Furthermore, in the HD vaccinees levels of MAIT cell activation and cytolytic potential correlated negatively to the adaptive antigen-specific immune responses. These findings indicate an unexpected association between MAIT cell compartment characteristics and the immune response magnitude to the BNT162b2 mRNA vaccine.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas de mRNA
16.
Mol Med ; 28(1): 20, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135470

RESUMO

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Vacinação/métodos , Vacinação/estatística & dados numéricos , Adulto Jovem
17.
Scand J Immunol ; : e13195, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652743

RESUMO

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

18.
Respir Res ; 23(1): 127, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585629

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation associated with chronic inflammation in the airways. Mucosal-associated invariant T (MAIT) cells are unconventional, innate-like T cells highly abundant in mucosal tissues including the lung. We hypothesized that the characteristics of MAIT cells in circulation may be prospectively associated with COPD morbidity. METHODS: COPD subjects (n = 61) from the Tools for Identifying Exacerbations (TIE) study were recruited when in stable condition. At study entry, forced expiratory volume in 1 s (FEV1) was measured and peripheral blood mononuclear cells were cryopreserved for later analysis by flow cytometry. Patients were followed for 3 years to record clinically meaningful outcomes. RESULTS: Patients who required hospitalization at one or more occasions during the 3-year follow-up (n = 21) had lower MAIT cell counts in peripheral blood at study inclusion, compared with patients who did not get hospitalized (p = 0.036). In contrast, hospitalized and never hospitalized patients did not differ in CD8 or CD4 T cell counts (p = 0.482 and p = 0.221, respectively). Moreover, MAIT cells in hospitalized subjects showed a more activated phenotype with higher CD38 expression (p = 0.014), and there was a trend towards higher LAG-3 expression (p = 0.052). Conventional CD4 and CD8 T cells were similar between the groups. Next we performed multi-variable logistic regression analysis with hospitalizations as dependent variable, and FEV1, GOLD 2017 group, and quantity or activation of MAIT and conventional T cells as independent variables. MAIT cell count, CD38 expression on MAIT cells, and LAG-3 expression on both MAIT and CD8 T cells were all independently associated with the risk of hospitalization. CONCLUSIONS: These findings suggest that MAIT cells might reflect a novel, FEV1-independent immunological dimension in the complexity of COPD. The potential implication of MAIT cells in COPD pathogenesis and MAIT cells' prognostic potential deserve further investigation.


Assuntos
Células T Invariantes Associadas à Mucosa , Doença Pulmonar Obstrutiva Crônica , Hospitalização , Humanos , Leucócitos Mononucleares , Contagem de Linfócitos , Doença Pulmonar Obstrutiva Crônica/metabolismo
19.
Crit Rev Immunol ; 41(5): 69-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36047323

RESUMO

Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin-related metabolites presented by the evolutionarily conserved MHC class I-related (MR1) molecule. MAIT cells are abundant in circulation and mucosal tissues and are poised to mount rapid effector responses against diverse microbial organisms. Despite the absence of virally encoded riboflavin-related metabolite antigens, MAIT cells can respond to viral infections in an MR1-independent and cytokine-dependent manner. In chronic HIV-1 infection, MAIT cells are persistently depleted and functionally exhausted. Long-term effective combination antiretroviral therapy can only partially rescue MAIT cell numbers and dysfunction. Our understanding of the mechanisms underlying MAIT cell loss in HIV-1 infection is still incomplete, and to date, few effective strategies to recover their loss in humans are available. Here, we review current knowledge concerning the mechanisms of MAIT cell responses and loss in different stages of HIV-1 infection and how we may potentially develop strategies to restore these cells in the clinical setting. We further discuss novel strategies that may aid future investigations into MAIT cell immunobiology in HIV-1 infection, including the potential use of three-dimensional organoid models to dissect the mechanisms of MAIT cell depletion and to explore interventions that may restore their numbers and functionality.

20.
J Immunol ; 205(1): 67-77, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434941

RESUMO

Mucosa-associated invariant T (MAIT) cells are innate-like antimicrobial T cells recognizing a breadth of important pathogens via presentation of microbial riboflavin metabolite Ags by MHC class Ib-related (MR1) molecules. However, the interaction of human MAIT cells with adaptive immune responses and the role they may play in settings of vaccinology remain relatively little explored. In this study we investigated the interplay between MAIT cell-mediated antibacterial effector functions and the humoral immune response. IgG opsonization of the model microbe Escherichia coli with pooled human sera markedly enhanced the capacity of monocytic APC to stimulate MAIT cells. This effect included greater sensitivity of recognition and faster response kinetics, as well as a markedly higher polyfunctionality and magnitude of MAIT cell responses involving a range of effector functions. The boost of MAIT cell responses was dependent on strongly enhanced MR1-mediated Ag presentation via increased FcγR-mediated uptake and signaling primarily mediated by FcγRI. To investigate possible translation of this effect to a vaccine setting, sera from human subjects before and after vaccination with the 13-valent-conjugated Streptococcus pneumoniae vaccine were assessed in a MAIT cell activation assay. Interestingly, vaccine-induced Abs enhanced Ag presentation to MAIT cells, resulting in more potent effector responses. These findings indicate that enhancement of Ag presentation by IgG opsonization allows innate-like MAIT cells to mount a faster, stronger, and qualitatively more complex response and to function as an effector arm of vaccine-induced humoral adaptive antibacterial immunity.


Assuntos
Apresentação de Antígeno , Infecções por Escherichia coli/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Infecções Pneumocócicas/prevenção & controle , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Tonsila Palatina/microbiologia , Fagocitose/imunologia , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Cultura Primária de Células , Transdução de Sinais/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA