Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 22(1): 192, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578240

RESUMO

BACKGROUND: In hepatocellular carcinoma (HCC), histone deacetylases (HDACs) are frequently overexpressed. This results in chromatin compaction and silencing of tumor-relevant genes and microRNAs. Modulation of microRNA expression is a potential treatment option for HCC. Therefore, we aimed to characterize the epigenetically regulated miR-129-5p regarding its functional effects and target genes to understand its relevance for HCC tumorigenesis. METHODS: Global miRNA expression of HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B) and normal liver cell lines (THLE-2, THLE-3) was analyzed after HDAC inhibition by miRNA sequencing. An in vivo xenograft mouse model and in vitro assays were used to investigate tumor-relevant functional effects following miR-129-5p transfection of HCC cells. To validate hepatoma-derived growth factor (HDGF) as a direct target gene of miR-129-5p, luciferase reporter assays were performed. Survival data and HDGF expression were analyzed in public HCC datasets. After siRNA-mediated knockdown of HDGF, its cancer-related functions were examined. RESULTS: HDAC inhibition induced the expression of miR-129-5p. Transfection of miR-129-5p increased the apoptosis of HCC cells, decreased proliferation, migration and ERK signaling in vitro and inhibited tumor growth in vivo. Direct binding of miR-129-5p to the 3'UTR of HDGF via a noncanonical binding site was validated by luciferase reporter assays. HDGF knockdown reduced cell viability and migration and increased apoptosis in Wnt-inactive HCC cells. These in vitro results were in line with the analysis of public HCC datasets showing that HDGF overexpression correlated with a worse survival prognosis, primarily in Wnt-inactive HCCs. CONCLUSIONS: This study provides detailed insights into the regulatory network of the tumor-suppressive, epigenetically regulated miR-129-5p in HCC. Our results reveal for the first time that the therapeutic application of mir-129-5p may have significant implications for the personalized treatment of patients with Wnt-inactive, advanced HCC by directly regulating HDGF. Therefore, miR-129-5p is a promising candidate for a microRNA replacement therapy to prevent HCC progression and tumor metastasis.

2.
Ann Hum Genet ; 84(2): 195-200, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31596515

RESUMO

Wilson's disease is an autosomal recessive disorder resulting from copper excess. Some patients with clinical Wilson's disease symptoms exhibit no or only heterozygous pathogenic variants in the coding region of the disease-causing ATP7B gene. Therefore, the ATP7B promoter region is of special interest. Metal-responsive elements (MREs) located in the ATP7B promoter are promising motifs in modulating the ATP7B expression. We studied protein interaction of MREe, MREc, and MREd by electrophoretic mobility shift assays and revealed specific interactions for all MREs. We further narrowed down the specific binding site. Proteins potentially binding to the three MREs were identified by MatInspector analyses. Metal regulatory transcription factor 1 (MTF1) could be validated to bind to MREe by electrophoretic mobility shift assays. ATP7B promoter-driven reporter gene expression was significantly increased because of this interaction. MTF1 is a strong candidate in regulating the ATP7B expression through MREe binding.


Assuntos
Carcinoma Hepatocelular/metabolismo , ATPases Transportadoras de Cobre/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Fatores de Transcrição/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , ATPases Transportadoras de Cobre/metabolismo , Proteínas de Ligação a DNA/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metais/metabolismo , Fatores de Transcrição/genética , Fator MTF-1 de Transcrição
3.
J Hepatol ; 66(5): 1012-1021, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28088579

RESUMO

BACKGROUND & AIMS: Modulation of microRNA expression is a potential treatment for hepatocellular carcinoma (HCC). Therefore, the epigenetically regulated microRNA-449 family (miR-449a, miR-449b, miR-449c) was characterized with regards to its functional effects and target genes in HCC. METHODS: After transfection of miR-449a, miR-449b, and/or miR-449c, tumor-relevant functional effects were analyzed using in vitro assays and a xenograft mouse model. Binding specificities, target genes, and regulated pathways of each miRNA were identified by microarray analyses. Target genes were validated by luciferase reporter assays and expression analyses in vitro. Furthermore, target gene expression was analyzed in 61 primary human HCCs compared to normal liver tissue. RESULTS: Tumor suppressive effects, binding specificities, target genes, and regulated pathways of miR-449a and miR-449b differed from those of miR-449c. Transfection of miR-449a, miR-449b, and/or miR-449c inhibited cell proliferation and migration, induced apoptosis, and reduced tumor growth to different extents. Importantly, miR-449a, miR-449b, and, to a lesser degree, miR-449c directly targeted SOX4, which codes for a transcription factor involved in epithelial-mesenchymal transition and HCC metastasis, and thereby inhibited TGF-ß-mediated cell migration. CONCLUSIONS: This study provides detailed insights into the regulatory network of the epigenetically regulated miRNA-449 family and, for the first time, describes distinct tumor suppressive effects and target specificities of miR-449a, miR-449b, and miR-449c. Our results indicate that particularly miR-449a and miR-449b may be considered for miRNA replacement therapy to prevent HCC progression and metastasis. LAY SUMMARY: In this study, we demonstrated that the microRNA-449 family acts as a tumor suppressor in liver cancer by causing cell death and inhibiting cell migration. These effects are caused by downregulation of the oncogene SOX4, which is frequently overexpressed in liver cancer. We conclude that the microRNA-449 family may be a target for liver cancer therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular , Genes Supressores de Tumor/fisiologia , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia , Fatores de Transcrição SOXC/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Acetilação , Animais , Carcinoma Hepatocelular/terapia , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Fator de Crescimento Transformador beta/fisiologia
4.
Gastroenterology ; 143(3): 811-820.e15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641068

RESUMO

BACKGROUND & AIMS: Histone deacetylation regulates chromatin remodeling and transcriptional down-regulation of specific genomic regions; it is altered in many types of cancer cells. We searched for microRNAs (miRs) that are affected by histone deacetylation and investigated the effects in hepatocellular carcinoma (HCC) cells. METHODS: HCC cell lines (HepG2, HLE, HLF, and Huh7) and immortalized liver cell lines (THLE-2 and THLE-3) were incubated with the histone deacetylase inhibitor trichostatin A. Differentially expressed messenger RNAs (mRNAs) and miRs were identified by expression profiling. Small interfering RNAs were used to reduce levels of histone deacetylases (HDAC)1-3, and HCC cell lines were transfected with miR-449. We evaluated growth of xenograft tumors from modified cells in nude mice. Cells were analyzed by immunoblot and luciferase reporter assays. We analyzed HCC samples from 23 patients. RESULTS: HDAC1-3 were up-regulated in HCC samples from patients. In cell lines, inhibition of HDAC significantly increased levels of hsa-miR-449a. c-MET mRNA, which encodes the receptor tyrosine kinase for hepatocyte growth factor, is a target of miR-449. Incubation of HCC cells with trichostatin A or transfection with miR-449 reduced expression of c-MET and phosphorylation of extracellular signal-regulated kinases 1 and 2 (downstream effectors of c-MET), increased apoptosis, and reduced proliferation. Huh-7 cells transfected with miR-449 formed tumors more slowly in mice than cells expressing control miRs. HCC samples from patients had lower levels of miR-449 and higher levels of c-MET than human reference. CONCLUSIONS: In HCC cells, up-regulation of HDAC1-3 reduces expression of miR-449. miR-449 binds c-MET mRNA to reduce its levels, promoting apoptosis and reducing proliferation of liver cells. Expression of miR-449 slows growth of HCC xenograft tumors in mice; this miR might function as a tumor suppressor.


Assuntos
Carcinoma Hepatocelular/enzimologia , Fator de Crescimento de Hepatócito/metabolismo , Histona Desacetilases/metabolismo , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Apoptose , Sítios de Ligação , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HEK293 , Células Hep G2 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral
5.
Exp Eye Res ; 116: 234-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076413

RESUMO

Age-related macular degeneration is the major cause of blindness in the elderly worldwide and the risk is influenced by both environmental and genetic risk factors. One important disease-associated region in humans is located on 10q26 and includes the two candidate genes ARMS2 and HTRA1. However, determination of the causative gene has not yet been possible and examining the situation in the rhesus monkey may help understand the situation in humans. In a recent paper, we characterized the rhesus monkey 10q26-orthologue region on chromosome 9 in detail and identified the drusen-associated HTRA1 promoter SNP rs196357513 as a putative risk factor. In this study, we predicted 9 binding sites for the vitamin D-dependent transcription factor vitamin D receptor in the rhesus HTRA1 promoter, one of which is destroyed by the rs196357513-risk allele. As patients with vitamin D deficit are at increased risk for age-related macular degeneration, a luciferase assay in transiently transfected ARPE19-cells was performed to evaluate the influence of the SNP rs196357513 and of 1,25-dihydroxyvitamin D on the rhesus monkey HTRA1 promoter activity. This revealed that the luciferase activity of the promoter construct containing the rs196357513 wild type allele was significantly reduced after vitamin D stimulation. An in silico analysis and literature search imply that this regulation could also play a role in human HTRA1 expression. Moreover, HTRA1 promoter activity of the construct containing the rs196357513 risk allele appeared diminished in comparison to the construct with the wild type allele, albeit this difference was not significant. The lower promoter activity due to the rhesus monkey rs196357513 risk allele apparently contradicts the common hypothesis for the human HTRA1 promoter risk allele of SNP rs11200638, for which a higher promoter activity has been observed. Our data point to a yet unexpected effect of decreased HTRA1 expression on drusen pathogenesis. Thus not only a higher HTRA1 expression, but an imbalance of HTRA1 might be disease-relevant. Both findings require closer analysis, but if relevance for humans proves true, it would impact current age-related macular degeneration research and treatment.


Assuntos
DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Macular/genética , Serina Endopeptidases/genética , Vitamina D/análogos & derivados , Alelos , Animais , Células Cultivadas , Modelos Animais de Doenças , Genótipo , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Macaca mulatta , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Serina Endopeptidases/biossíntese , Vitamina D/farmacologia , Vitaminas/farmacologia
6.
Hepatol Int ; 14(3): 373-384, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31440992

RESUMO

BACKGROUND: Activation of Wnt/ß-catenin pathway is a frequent event in hepatocellular carcinoma and is associated with enhanced cell survival and proliferation. Therefore, targeting this signaling pathway is discussed as an attractive therapeutic approach for HCC treatment. BCL9 and BCL9L, two homologous coactivators of the ß-catenin transcription factor complex, have not yet been comprehensively characterized in HCC. We aimed to elucidate the roles of BCL9 and BCL9L, especially regarding Wnt/ß-catenin signaling and their prognostic value in HCC. METHODS: Expression of BCL9/BCL9L was determined in HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B, and Huh6) and normal liver cell lines (THLE-2 and THLE-3). To analyze proliferation and apoptosis, BCL9 and/or BCL9L were knocked down in Wnt-inactive HLE and Wnt-active HepG2 and Huh6 cells using siRNA. Subsequently, Wnt reporter assays were performed in HepG2 and Huh6 cells. BCL9 and BCL9L expression, clinicopathological and survival data of public HCC datasets were analyzed, taking the Wnt signaling status into account. RESULTS: Knockdown of BCL9L, but not of BCL9, reduced Wnt signaling activity. Knockdown of BCL9 and/or BCL9L reduced cell viability and increased apoptosis of Wnt-inactive HCC cells, but had no effect in Wnt-active cells. Expression of BCL9 and BCL9L was upregulated in human HCC and increased with progressing dedifferentiation. For BCL9L, higher expression was observed in tumors of larger size. Overexpression of BCL9 and BCL9L correlated with poor overall survival, especially in HCC without activated Wnt signaling. CONCLUSION: Oncogenic BCL9 proteins represent promising targets for cancer therapy and inhibiting them may be particularly beneficial in Wnt-inactive HCCs.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a DNA/genética , Neoplasias Hepáticas , Fatores de Transcrição/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias , Farmacogenética , Prognóstico , Análise de Sobrevida , Via de Sinalização Wnt
7.
Eur J Med Res ; 21(1): 26, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342975

RESUMO

BACKGROUND: Histone deacetylation, a common hallmark in malignant tumors, strongly alters the transcription of genes involved in the control of proliferation, cell survival, differentiation and genetic stability. We have previously shown that HDAC1, HDAC2, and HDAC3 (HDAC1-3) genes encoding histone deacetylases 1-3 are upregulated in primary human hepatocellular carcinoma (HCC). The aim of this study was to characterize the functional effects of HDAC1-3 downregulation and to identify functionally important target genes of histone deacetylation in HCC. METHODS: Therefore, HCC cell lines were treated with the histone deacetylase inhibitor (HDACi) trichostatin A and by siRNA-knockdown of HDAC1-3. Differentially expressed mRNAs were identified after siRNA-knockdown of HDAC1-3 using mRNA expression profiling. Findings were validated after siRNA-mediated silencing of HDAC1-3 using qRTPCR and Western blotting assays. RESULTS: mRNA profiling identified apoptotic protease-activating factor 1 (Apaf1) to be significantly upregulated after HDAC inhibition (HLE siRNA#1/siRNA#2 p < 0.05, HLF siRNA#1/siRNA#2 p < 0.05). As a component of the apoptosome, a caspase-activating complex, Apaf1 plays a central role in the mitochondrial caspase activation pathway of apoptosis. Using annexin V, a significant increase in apoptosis could also be shown in HLE (siRNA #1 p = 0.0034) and HLF after siRNA against HDAC1-3 (Fig. 3a, b). In parallel, caspase-9 activity was increased after siRNA-knockdown of HDAC1-3 leading to enhanced apoptosis after HDAC inhibition (Fig. 3c, d). CONCLUSIONS: The present data show that siRNA-knockdown of HDAC1-3 plays a major role in mediating apoptotic response to HDAC inhibitors through regulation of Apaf1.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Carcinoma Hepatocelular/patologia , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilases/química , Neoplasias Hepáticas/patologia , Fator Apoptótico 1 Ativador de Proteases/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspases/metabolismo , Proliferação de Células , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA