Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biotechnol Bioeng ; 120(9): 2639-2657, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36779302

RESUMO

We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.


Assuntos
Vírus Oncolíticos , Animais , Vírus Oncolíticos/genética , Técnicas de Cultura de Células , Reatores Biológicos , Linhagem Celular , Vesiculovirus/genética , Cultura de Vírus
2.
BMC Biotechnol ; 22(1): 17, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715843

RESUMO

BACKGROUND: Mass vaccination of dogs as important rabies reservoir is proposed to most effectively reduce and eliminate rabies also in humans. However, a minimum coverage of 70% needs to be achieved for control of the disease in zoonotic regions. In numerous developing countries, dog vaccination rate is still dangerously low because of economic constraints and due to a high turnover in dog populations. Improved vaccine production processes may help to alleviate cost and supply limitations. In this work, we studied and optimized the replication and vaccine potency of PV rabies virus strain in the muscovy-duck derived AGE1.CR and AGE1.CR.pIX suspension cell lines. RESULTS: The BHK-21-adapted PV rabies virus strain replicated efficiently in the avian cell lines without requirement for prior passaging. CR.pIX was previously shown to augment heat shock responses and supported slightly higher infectious titers compared to the parental CR cell line. Both cell lines allowed replication of rabies virus also in absence of recombinant IGF, the only complex component of the chemically defined medium that was developed for the two cell lines. After scale-up from optimization experiments in shake flask to production in 7-l bioreactors peak virus titers of 2.4 × 108 FFU/ml were obtained. The potency of inactivated rabies virus harvest according to the NIH test was 3.5 IU/ml. Perfusion with the chemically defined medium during the virus replication phase improved the potency of the vaccine twofold, and increased the number of doses 9.6 fold. CONCLUSION: This study demonstrates that a rabies vaccine for animal vaccination can be produced efficiently in the AGE1.CR.pIX suspension cell line in a scalable process in chemically defined medium.


Assuntos
Vacina Antirrábica , Raiva , Animais , Reatores Biológicos , Linhagem Celular , Cães , Patos , Raiva/prevenção & controle , Raiva/veterinária
3.
Appl Microbiol Biotechnol ; 106(13-16): 4945-4961, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767011

RESUMO

Oncolytic viruses (OVs) represent a novel class of immunotherapeutics under development for the treatment of cancers. OVs that express a cognate or transgenic fusion protein is particularly promising as their enhanced intratumoral spread via syncytia formation can be a potent mechanism for tumor lysis and induction of antitumor immune responses. Rapid and efficient fusion of infected cells results in cell death before high titers are reached. Although this is an attractive safety feature, it also presents unique challenges for large-scale clinical-grade manufacture of OVs. Here we evaluate the use of four different suspension cell lines for the production of a novel fusogenic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV). The candidate cell lines were screened for growth, metabolism, and virus productivity. Permissivity was evaluated based on extracellular infectious virus titers and cell-specific virus yields (CSVYs). For additional process optimizations, virus adaptation and multiplicity of infection (MOI) screenings were performed and confirmed in a 1 L bioreactor. BHK-21 and HEK293SF cells infected at concentrations of 2 × 106 cells/mL were identified as promising candidates for rVSV-NDV production, leading to infectious titers of 3.0 × 108 TCID50/mL and 7.5 × 107 TCID50/mL, and CSVYs of 153 and 9, respectively. Compared to the AGE1.CR.pIX reference produced in adherent cultures, oncolytic potency was not affected by production in suspension cultures and possibly even increased in cultures of HEK293SF and AGE1.CR.pIX. Our study describes promising suspension cell-based processes for efficient large-scale manufacturing of rVSV-NDV. KEY POINTS: • Cell contact-dependent oncolytic virus (OV) replicates in suspension cells. • Oncolytic potency is not encompassed during suspension cultivation. • Media composition, cell line, and MOI are critical process parameters for OV production. • The designed process is scalable and shows great promise for manufacturing clinical-grade material.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Cultura de Vírus/métodos , Replicação Viral
4.
Biotechnol Bioeng ; 117(5): 1533-1553, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022250

RESUMO

Mathematical modeling of animal cell growth and metabolism is essential for the understanding and improvement of the production of biopharmaceuticals. Models can explain the dynamic behavior of cell growth and product formation, support the identification of the most relevant parameters for process design, and significantly reduce the number of experiments to be performed for process optimization. Few dynamic models have been established that describe both extracellular and intracellular dynamics of growth and metabolism of animal cells. In this study, a model was developed, which comprises a set of 33 ordinary differential equations to describe batch cultivations of suspension AGE1.HN.AAT cells considered for the production of α1-antitrypsin. This model combines a segregated cell growth model with a structured model of intracellular metabolism. Overall, it considers the viable cell concentration, mean cell diameter, viable cell volume, concentration of extracellular substrates, and intracellular concentrations of key metabolites from the central carbon metabolism. Furthermore, the release of metabolic by-products such as lactate and ammonium was estimated directly from the intracellular reactions. Based on the same set of parameters, this model simulates well the dynamics of four independent batch cultivations. Analysis of the simulated intracellular rates revealed at least two distinct cellular physiological states. The first physiological state was characterized by a high glycolytic rate and high lactate production. Whereas the second state was characterized by efficient adenosine triphosphate production, a low glycolytic rate, and reactions of the TCA cycle running in the reverse direction from α-ketoglutarate to citrate. Finally, we show possible applications of the model for cell line engineering and media optimization with two case studies.


Assuntos
Processos de Crescimento Celular/fisiologia , Espaço Intracelular/metabolismo , Modelos Biológicos , Reatores Biológicos , Engenharia Celular , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Espaço Extracelular/metabolismo , Glicólise/fisiologia , Humanos , Cinética
5.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232179

RESUMO

Oncolytic viruses represent an exciting new aspect of the evolving field of cancer immunotherapy. We have engineered a novel hybrid vector comprising vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV), named recombinant VSV-NDV (rVSV-NDV), wherein the VSV backbone is conserved but its glycoprotein has been replaced by the hemagglutinin-neuraminidase (HN) and the modified, hyperfusogenic fusion (F) envelope proteins of recombinant NDV. In comparison to wild-type VSV, which kills cells through a classical cytopathic effect, the recombinant virus is able to induce tumor-specific syncytium formation, allowing efficient cell-to-cell spread of the virus and a rapid onset of immunogenic cell death. Furthermore, the glycoprotein exchange substantially abrogates the off-target effects in brain and liver tissue associated with wild-type VSV, resulting in a markedly enhanced safety profile, even in immune-deficient NOD.CB17-prkdcscid/NCrCrl (NOD-SCID) mice, which are highly susceptible to wild-type VSV. Although NDV causes severe pathogenicity in its natural avian hosts, the incorporation of the envelope proteins in the chimeric rVSV-NDV vector is avirulent in embryonated chicken eggs. Finally, systemic administration of rVSV-NDV in orthotopic hepatocellular carcinoma (HCC)-bearing immune-competent mice resulted in significant survival prolongation. This strategy, therefore, combines the beneficial properties of the rapidly replicating VSV platform with the highly efficient spread and immunogenic cell death of a fusogenic virus without risking the safety and environmental threats associated with either parental vector. Taking the data together, rVSV-NDV represents an attractive vector platform for clinical translation as a safe and effective oncolytic virus.IMPORTANCE The therapeutic efficacy of oncolytic viral therapy often comes as a tradeoff with safety, such that potent vectors are often associated with toxicity, while safer viruses tend to have attenuated therapeutic effects. Despite promising preclinical data, the development of VSV as a clinical agent has been substantially hampered by the fact that severe neurotoxicity and hepatotoxicity have been observed in rodents and nonhuman primates in response to treatment with wild-type VSV. Although NDV has been shown to have an attractive safety profile in humans and to have promising oncolytic effects, its further development has been severely restricted due to the environmental risks that it poses. The hybrid rVSV-NDV vector, therefore, represents an extremely promising vector platform in that it has been rationally designed to be safe, with respect to both the recipient and the environment, while being simultaneously effective, both through its direct oncolytic actions and through induction of immunogenic cell death.


Assuntos
Carcinoma Hepatocelular/terapia , Vetores Genéticos/administração & dosagem , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Vírus da Doença de Newcastle/genética , Células Tumorais Cultivadas , Vírus da Estomatite Vesicular Indiana/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Appl Microbiol Biotechnol ; 103(7): 3025-3035, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30796494

RESUMO

A cultivation strategy to increase the productivity of Modified Vaccinia Ankara (MVA) virus in high-cell density processes is presented. Based on an approach developed in shake flask cultures, this strategy was established in benchtop bioreactors, comprising the growth of suspension AGE1.CR.pIX cells to high cell densities in a chemically defined medium before infection with the MVA-CR19 virus strain. First, a perfusion regime was established to optimize the cell growth phase. Second, a fed-batch regime was chosen for the initial infection phase to facilitate virus uptake and cell-to-cell spreading. Afterwards, a switch to perfusion enabled the continuous supply of nutrients for the late stages of virus propagation. With maximum infectious titers of 1.0 × 1010 IU/mL, this hybrid fed-batch/perfusion strategy increased product titers by almost one order of magnitude compared to conventional batch cultivations. Finally, this strategy was also applied to the production of influenza A/PR/8/34 (H1N1) virus considered for manufacturing of inactivated vaccines. Using the same culture system, a total number of 3.8 × 1010 virions/mL was achieved. Overall, comparable or even higher cell-specific virus yields and volumetric productivities were obtained using the same cultivation systems as for the conventional batch cultivations. In addition, most viral particles were found in the culture supernatant, which can simplify further downstream operations, in particular for MVA viruses. Considering the current availability of well-described perfusion/cell retention technologies, the present strategy may contribute to the development of new approaches for viral vaccine production.


Assuntos
Técnicas de Cultura Celular por Lotes , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vaccinia virus/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Reatores Biológicos , Linhagem Celular , Patos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vaccinia virus/fisiologia , Vírion/crescimento & desenvolvimento , Vírion/fisiologia , Replicação Viral
7.
Avian Pathol ; 45(2): 137-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26814192

RESUMO

Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.


Assuntos
Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Viroses/veterinária , Animais , Anseriformes , Linhagem Celular , Patos , Feminino , Óvulo , Retina , Viroses/prevenção & controle
8.
J Proteome Res ; 13(12): 6144-51, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25348702

RESUMO

Cell surfaces are covered with a dense carbohydrate layer referred to as the glycocalyx. Because different cell types express different glycan signatures, it is of paramount importance to have robust methods to analyze the glycome of living cells. To achieve this, a common procedure involves cell lysis and extraction of membrane (glyco)proteins and yields a major proportion of high-mannose N-glycans that most likely stem from intracellular proteins derived from the ER. Using HEK 293 cells as a model system, we developed a reproducible, sensitive, and fast method to profile surface N-glycosylation from living cells. We directly released glycopeptides from cell surfaces through tryptic digestion of freshly harvested and vital cells, thereby improving the detection and quantification of complex-type N-glycans by increasing their relative amount from 14 to 85%. It was also possible to detect 25 additional structures in HEK 293, 48 in AGE1.HN, 42 in CHO-K1, and 51 in Hep G2 cells. The additional signals provided deeper insight into cell-type-specific N-glycan features such as antennarity, fucosylation, and sialylation. Thus, this protocol, which can potentially be applied to any cells, will be useful in the fields of glycobiotechnology and biomarker discovery.


Assuntos
Membrana Celular/metabolismo , Glicopeptídeos/análise , Glicoproteínas/análise , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Células CHO , Extratos Celulares/análise , Linhagem Celular , Cricetinae , Cricetulus , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , Polissacarídeos/análise , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes , Tripsina/metabolismo
9.
Front Immunol ; 15: 1338492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380318

RESUMO

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.


Assuntos
Vacinas Sintéticas , Vaccinia virus , Ratos , Animais , Vaccinia virus/genética , Linfócitos T CD8-Positivos , Transgenes
10.
Vaccines (Basel) ; 12(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066393

RESUMO

The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manufacture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream process. The use of an automated parallel ambr15 microbioreactor system for screening and process optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and the establishment of optimized production conditions, which have resulted in a >100-fold increase in virus titers compared to the current state of the art using adherent Vero cells. The process can readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses produced are genetically stable and maintain their favorable safety and immunogenicity profile, as demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotection in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines, which outperforms current standards. The approach described here can serve as a model for the development of scalable processes and the optimization of yields for other virus-based vaccines that face challenges in meeting growing demands.

11.
J Control Release ; 371: 179-192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795814

RESUMO

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.


Assuntos
Vacinas contra COVID-19 , Nanopartículas , Animais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Administração Oral , Nanopartículas/administração & dosagem , Mucosa Bucal/imunologia , COVID-19/prevenção & controle , Feminino , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química , Lipídeos/administração & dosagem , RNA Mensageiro/administração & dosagem , Lipossomos
12.
Metab Eng ; 16: 103-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23376655

RESUMO

The metabolic burden on human AGE1.HN cells imposed by the production of recombinant α1-antitrypsin (A1AT) was studied by comparing a selected high-producing clonal cell line with the parental cell line. RNA, lipid, and phosphatidylcholine fractions were higher in the producer cell line causing metabolic changes in the producer, e.g., increased glycine and glutamate production. By simulating the theoretical metabolite demand for production of mature A1AT using a network model, it was found that the differences in metabolic profiles between producer and parental cells match the observed increased C1-unit and nucleotide demand as well as lipid precursor demand in the producer. Additionally, metabolic flux analysis revealed similar energy metabolism in both cell lines. The increased lipid content seems related to activated secretion machinery in the producer cell line. Increased lipid and C1 metabolism seem important targets for further improvement of AGE1.HN and other producing mammalian cells.


Assuntos
Metabolismo Energético , Modelos Biológicos , alfa 1-Antitripsina/biossíntese , Linhagem Celular Transformada , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , alfa 1-Antitripsina/genética
13.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259374

RESUMO

Practically the entire global population is infected by herpesviruses that establish lifelong latency and can be reactivated. Alpha-herpesviruses, herpes simplex viruses 1 and 2 (HSV-1/HSV-2) and varicella zoster virus (VZV), establish latency in sensory neurons and then reactivate to infect epithelial cells in the mucosa or skin, resulting in a vesicular rash. Licensed antivirals inhibit virus replication, but do not affect latency. On reactivation, VZV causes herpes zoster, also known as shingles. The 76-year-old first author of this paper published an autobiography of his own severe herpes zoster ophthalmicus (HZO) infection with orbital edema, which is considered an emergency condition. Acyclovir (ACV) treatment was complemented with an immunostimulatory viral therapy, which resolved most symptoms within a few days. The orally administered live-attenuated infectious bursal disease vaccine virus (IBDV) delivers its double-stranded RNA (dsRNA) cargo to host cells and activates the natural antiviral interferon (IFN) gene defense system from within the host cells. IBDV has already been demonstrated to be safe and effective against five different families of viruses, hepatitis A virus (HAV), hepatitis B and C virus (HBV/HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and varicella zoster virus (VZV). Here we propose a short phase I/II trial in elderly shingles patients who will be assigned to receive either ACV monotherapy or ACV combined with R903/78, an attenuated immunostimulatory IBDV strain. The primary endpoints will be safety, but the efficacy of the combination therapy against the ACV monotherapy also will be assessed.

14.
J Pharm Biomed Anal ; 235: 115596, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540995

RESUMO

Monoclonal antibodies (mAbs) used as therapeutics need comprehensive characterization for appropriate quality assurance. For analysis, cost-effective methods are of high importance, especially when it comes to biosimilar development which is based on extended physicochemical characterization. The use of forced degradation to study the occurrence of modifications for analysis is well established in drug development and may be used for the evaluation of critical quality attributes (CQAs). For mAb analysis different procedures of liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses are commonly applied. In this study the middle-up approach is compared to the more expensive bottom-up analysis in a forced oxidation biosimilar comparability study. Bevacizumab and infliximab as well as biosimilar candidates for the two mAbs were forcefully oxidized by H2O2 for 24, 48 and 72 h. For bottom-up, the reduced and alkylated trypsin or Lys-C digested samples were analysed by LC-MS with quadrupole time-of-flight mass analyser (LC-QTOF-MS) to detect susceptible residues. By middle-up analysis several species of every subunit (Fc/2, light chain and Fd') were detected which differed in the number of oxidations. For the most abundant species, results from middle-up were in line with results from bottom-up analysis, confirming the strength of middle-up analysis. However, for less abundant species of some subunits, results differed between the two approaches. In both mAbs, the Fc was extensively oxidized. In infliximab, additional extensive oxidation was found in the Fab. Assignment to specific amino acid residues was finally possible using the results from bottom-up analyses. Interestingly, the C-terminal cysteine of the light chain was partially found triply oxidized in both mAbs. The comparison of susceptibility to oxidation showed high similarity between the reference products and their biosimilar candidates. It is suggested that the findings of middle-up experiments should be complemented by bottom-up analysis to confirm the assignments of the localization of modifications. Once the consistency of results has been established, middle-up analyses are sufficient in extended forced degradation biosimilar studies.


Assuntos
Medicamentos Biossimilares , Infliximab/química , Bevacizumab , Medicamentos Biossimilares/química , Peróxido de Hidrogênio , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos
15.
Bioengineering (Basel) ; 10(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37370584

RESUMO

Analytical methods fr direct quantitative N-glycan analysis require a sequence of sample preparation and clean-up steps that result in reduced glycan recovery. Therefore, we aimed to combine glycan release and labeling steps. Based on the hypothesis that the reaction mechanism for oxidative chemical glycan release comprises a stable glycan isocyanate intermediate, we investigated whether this could be exploited for the in-situ preparation of fluorescent glycan conjugates. ANTS-labeled N-glycans were derived from chicken ovalbumin via an in-situ chemical release/coupling approach and by standard Peptide-N-Glycosidase F (PNGase F) digestion/reductive amination. Synoptic fluorescence-assisted carbohydrate electrophoresis with UV detection (FACE-UV) analysis yielded matching patterns of fluorescent N-glycan bands in the expected electrophoretic mobility range between hexose units GU-5 and GU-11 of the standard. Anthranilamide (2-AB)-glycan conjugates prepared from a test glycoprotein carrying a predominant Core-F glycan gave single predominant peaks in hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) and electrospray ionization mass spectrometry (ESI-MS) spectra in agreement with sodiated triply charged Core-F-AB conjugates for both the standard and the in-situ coupling methods. The Core-F-AB conjugate prepared by the in-situ coupling approach had a slightly elevated retention time on HILIC-FLD and an ESI-MS m/z peak in line with a urea-bonded glycan-AB conjugate, with closed pyran ring structures on the glycan moiety. Glycan isocyanates intermittently formed during chemical glycan release, which could be utilized to prepare labeled glycan samples directly from glycoproteins and fluorescent dyes bearing a primary amine functional group.

16.
Front Immunol ; 14: 1118523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911730

RESUMO

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos , Vacinas contra COVID-19 , Polissacarídeos , Anticorpos Neutralizantes
17.
Nat Biomed Eng ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749309

RESUMO

The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.

18.
BMC Biotechnol ; 12: 79, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110398

RESUMO

BACKGROUND: Current influenza vaccines are trivalent or quadrivalent inactivated split or subunit vaccines administered intramuscularly, or live attenuated influenza vaccines (LAIV) adapted to replicate at temperatures below body temperature and administered intranasally. Both vaccines are considered safe and efficient, but due to differences in specific properties may complement each other to ensure reliable vaccine coverage. By now, licensed LAIV are produced in embryonated chicken eggs. In the near future influenza vaccines for human use will also be available from adherent MDCK or Vero cell cultures, but a scalable suspension process may facilitate production and supply with vaccines. RESULTS: We evaluated the production of cold-adapted human influenza virus strains in the duck suspension cell line AGE1.CR.pIX using a chemically-defined medium. One cold-adapted A (H1N1) and one cold-adapted B virus strain was tested, as well as the reference strain A/PR/8/34 (H1N1). It is shown that a medium exchange is not required for infection and that maximum virus titers are obtained for 1 × 10⁻6 trypsin units per cell. 1 L bioreactor cultivations showed that 4 × 106 cells/mL can be infected without a cell density effect achieving titers of 1 × 108 virions/mL after 24 h. CONCLUSIONS: Overall, this study demonstrates that AGE1.CR.pIX cells support replication of LAIV strains in a chemically-defined medium using a simple process without medium exchanges. Moreover, the process is fast with peak titers obtained 24 h post infection and easily scalable to industrial volumes as neither microcarriers nor medium replacements are required.


Assuntos
Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura/química , Patos , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/prevenção & controle , Temperatura , Vacinas Atenuadas/biossíntese , Vacinas Atenuadas/imunologia , Cultura de Vírus , Replicação Viral
19.
Metab Eng ; 14(2): 128-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22289170

RESUMO

This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth.


Assuntos
Aminoácidos/metabolismo , Amônia/farmacologia , Metabolismo Energético/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , alfa 1-Antitripsina/biossíntese , Amônia/metabolismo , Linhagem Celular , Humanos , Transaminases/metabolismo
20.
Appl Microbiol Biotechnol ; 93(4): 1637-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21842438

RESUMO

Metabolic responses of the new neuronal human cell line AGE1.HN to various substrate levels were analyzed in this study showing that reduced substrate and especially pyruvate load improves metabolic efficiency, leading to improved growth and α(1)-antitrypsin (A1AT) production. The adaptation of the metabolism to different pyruvate and glutamine concentrations was analyzed in detail using a full factorial design. The most important finding was an increasingly inefficient use of substrates as well as the reduction of cell proliferation with increasing pyruvate concentrations in the medium. Cultivations with different feeding profiles showed that the highest viable cell density and A1AT concentration (167% of batch) was reached in the culture with the lowest glucose level and without pyruvate feeding. Analysis of metabolic fluxes in the differently fed cultures revealed a more efficient metabolic phenotype in the cultures without pyruvate feeding. The measured in vitro enzyme activities of the selected enzymes involved in pyruvate metabolism were lower in AGE1.HN compared with CHO cells, which might explain the higher sensitivity and different adaptation of AGE1.HN to increased pyruvate concentrations. The results indicate on the one hand that increasing the connectivity between glycolysis and the TCA cycle might improve substrate use and, finally, the production of A1AT. On the other hand, a better balanced substrate uptake promises a reduction of energy spilling which is increased with increasing substrate levels in this cell line. Overall, the results of this study provide important insights into the regulation of primary metabolism and into the adaptation of AGE1.HN to different substrate levels, providing guidance for further optimization of production cell lines and applied process conditions.


Assuntos
Proliferação de Células , Neurônios/fisiologia , Ácido Pirúvico/metabolismo , alfa 1-Antitripsina/metabolismo , Linhagem Celular , Sobrevivência Celular , Meios de Cultura/química , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA