Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569832

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle disease caused by mutations in the dystrophin gene characterized by myofiber fragility and progressive muscle degeneration. The genetic defect results in a reduced number of self-renewing muscle stem cells (MuSCs) and an impairment of their activation and differentiation, which lead to the exhaustion of skeletal muscle regeneration potential and muscle replacement by fibrotic and fatty tissue. In this study, we focused on an unexplored strategy to improve MuSC function and to preserve their niche based on the regenerative properties of mesenchymal stromal cells from the amniotic membrane (hAMSCs), that are multipotent cells recognized to have a role in tissue repair in different disease models. We demonstrate that the hAMSC secretome (CM hAMSC) and extracellular vesicles (EVs) isolated thereof directly stimulate the in vitro proliferation and differentiation of human myoblasts and mouse MuSC from dystrophic muscles. Furthermore, we demonstrate that hAMSC secreted factors modulate the muscle stem cell niche in dystrophic-mdx-mice. Interestingly, local injection of EV hAMSC in mdx muscles correlated with an increase in the number of activated Pax7+/Ki67+ MuSCs and in new fiber formation. EV hAMSCs also significantly reduced muscle collagen deposition, thus counteracting fibrosis and MuSCs exhaustion, two hallmarks of DMD. Herein for the first time we demonstrate that CM hAMSC and EVs derived thereof promote muscle regeneration by supporting proliferation and differentiation of resident muscle stem cells. These results pave the way for the development of a novel treatment to counteract DMD progression by reducing fibrosis and enhancing myogenesis in dystrophic muscles.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Humanos , Animais , Camundongos , Camundongos Endogâmicos mdx , Âmnio , Músculo Esquelético , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901738

RESUMO

Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Humanos , Histona Desacetilases/metabolismo , Distrofia Muscular de Duchenne/genética , Carbamatos/farmacologia , Músculo Esquelético/metabolismo , Inibidores de Histona Desacetilases/farmacologia
3.
EMBO Rep ; 21(9): e50863, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32754983

RESUMO

We show that extracellular vesicles (EVs) released by mesenchymal cells (i.e., fibro-adipogenic progenitors-FAPs) mediate microRNA (miR) transfer to muscle stem cells (MuSCs) and that exposure of dystrophic FAPs to HDAC inhibitors (HDACis) increases the intra-EV levels of a subset of miRs, which cooperatively target biological processes of therapeutic interest, including regeneration, fibrosis, and inflammation. Increased levels of miR-206 in EVs released by FAPs of muscles from Duchenne muscular dystrophy (DMD) patients or mdx mice exposed to HDACi are associated with enhanced regeneration and decreased fibrosis. Consistently, EVs from HDACi-treated dystrophic FAPs can stimulate MuSC activation and expansion ex vivo, and promote regeneration, while inhibiting fibrosis and inflammation of dystrophic muscles, upon intramuscular transplantation in mdx mice, in vivo. AntagomiR-mediated blockade of individual miRs reveals a specific requirement of miR-206 for EV-induced expansion of MuSCs and regeneration of dystrophic muscles, and indicates that cooperative activity of HDACi-induced miRs accounts for the net biological effect of these EVs. These data point to pharmacological modulation of EV content as novel strategy for therapeutic interventions in muscular dystrophies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , MicroRNAs/genética , Músculo Esquelético
4.
Adv Exp Med Biol ; 1382: 71-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029404

RESUMO

Muscular dystrophies are a complex group of inherited neuromuscular disorders that progressively lead to a loss of muscle fibers and mobility and muscle weakness; over time, they evolve to an increasing level of disability. Muscular dystrophies are mostly caused by genetic mutations in proteins responsible for maintaining sarcolemma structures, such as an absence or reductions of dystrophin expression, conditions which are strictly related to muscular disorders that affect most people with this disease. Along the years, with the recent advances in the understanding of muscular dystrophies, it has been shown that many changes in Post-Translational Modifications (PTMs) of muscle proteins are associated with muscular dystrophies, wherein pathogenic alterations in the modulation of these muscle proteins are directly related to the incidence of this disease. An increase in the identification of the genetic bases and molecular mechanisms involved in the most common form of muscular dystrophies, including PTMs changes, holds potential to develop new therapeutic approaches. In this chapter we will describe the most common muscular dystrophies and changes in PTM processes such as phosphorylation and glycosylation that are very important in the evolution of the disease, highlighting the lack of mass spectrometry-based (MS-based) studies of these PTMs, suggesting that the application of this technique could reveal important informations about the molecular mechanisms of muscular dystrophies.


Assuntos
Distrofias Musculares , Humanos , Proteínas Musculares , Mutação , Processamento de Proteína Pós-Traducional
5.
Genes Dev ; 28(8): 841-57, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24682306

RESUMO

Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.


Assuntos
Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Células-Tronco/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
6.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023816

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by muscle wasting and chronic inflammation, leading to impaired satellite cells (SCs) function and exhaustion of their regenerative capacity. We previously showed that lack of PKCθ in mdx mice, a mouse model of DMD, reduces muscle wasting and inflammation, and improves muscle regeneration and performance at early stages of the disease. In this study, we show that muscle regeneration is boosted, and fibrosis reduced in mdxθ-/- mice, even at advanced stages of the disease. This phenotype was associated with a higher number of Pax7 positive cells in mdxθ-/- muscle compared with mdx muscle, during the progression of the disease. Moreover, the expression level of Pax7 and Notch1, the pivotal regulators of SCs self-renewal, were upregulated in SCs isolated from mdxθ-/- muscle compared with mdx derived SCs. Likewise, the expression of the Notch ligands Delta1 and Jagged1 was higher in mdxθ-/- muscle compared with mdx. The expression level of Delta1 and Jagged1 was also higher in PKCθ-/- muscle compared with WT muscle following acute injury. In addition, lack of PKCθ prolonged the survival and sustained the differentiation of transplanted myogenic progenitors. Overall, our results suggest that lack of PKCθ promotes muscle repair in dystrophic mice, supporting stem cells survival and maintenance through increased Delta-Notch signaling.


Assuntos
Cardiotoxinas/efeitos adversos , Músculo Esquelético/lesões , Distrofia Muscular de Duchenne/genética , Proteína Quinase C-theta/genética , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Fator de Transcrição PAX7/metabolismo , Receptor Notch1/metabolismo , Regeneração , Transdução de Sinais , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
Front Bioeng Biotechnol ; 9: 652970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095095

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.

8.
Methods Mol Biol ; 1687: 231-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067668

RESUMO

Functional interactions between muscle (satellite) stem cells-MuSCs-and other cellular components of their niche (the fibro-adipogenic progenitors-FAPs) coordinate regeneration of injured as well as diseased skeletal muscles. These interactions are largely mediated by secretory networks, whose integrity is critical to determine whether repair occurs by compensatory regeneration leading to formation of new contractile fibers, or by maladaptive formation of fibrotic scars and fat infiltration. Here we provide the description of methods for isolation of FAPs and MuSCs from muscles of wild type and dystrophic mice, and protocols of cocultures as well as MuSC's exposure to FAP- derived exosomes. These methods and protocols can be exploited in murine models of acute muscle injury to investigate salient features of physiological repair, and in models of muscular diseases to identify dysregulated networks that compromise functional interactions between cellular components of the regeneration environment during disease progression. We predict that exporting these procedures to patient-derived muscle samples will contribute to advance our understanding of human skeletal myogenesis and related disorders.


Assuntos
Tecido Adiposo/citologia , Separação Celular/métodos , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diferenciação Celular/genética , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Mioblastos/patologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
9.
Stem Cells Int ; 2016: 6093601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839565

RESUMO

In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA