RESUMO
Production of butanol by solventogenic clostridia is controlled through metabolic regulation of the carbon flow and limited by its toxic effects. To overcome cell sensitivity to solvents, stress-directed evolution methodology was used three decades ago on Clostridium beijerinckii NCIMB 8052 that spawned the SA-1 strain. Here, we evaluated SA-1 solventogenic capabilities when growing on a previously validated medium containing, as carbon- and energy-limiting substrates, sucrose and the products of its hydrolysis d-glucose and d-fructose and only d-fructose. Comparative small-scale batch fermentations with controlled pH (pH 6.5) showed that SA-1 is a solvent hyper-producing strain capable of generating up to 16.1 g l(-1) of butanol and 26.3 g l(-1) of total solvents, 62.3â% and 63â% more than NCIMB 8052, respectively. This corresponds to butanol and solvent yields of 0.3 and 0.49 g g(-1), respectively (63â% and 65â% increase compared with NCIMB 8052). SA-1 showed a deficiency in d-fructose transport as suggested by its 7 h generation time compared with 1 h for NCIMB 8052. To potentially correlate physiological behaviour with genetic mutations, the whole genome of SA-1 was sequenced using the Illumina GA IIx platform. PCR and Sanger sequencing were performed to analyse the putative variations. As a result, four errors were confirmed and validated in the reference genome of NCIMB 8052 and a total of 10 genetic polymorphisms in SA-1. The genetic polymorphisms included eight single nucleotide variants, one small deletion and one large insertion that it is an additional copy of the insertion sequence ISCb1. Two of the genetic polymorphisms, the serine threonine phosphatase cbs_4400 and the solute binding protein cbs_0769, may possibly explain some of the observed physiological behaviour, such as rerouting of the metabolic carbon flow, deregulation of the d-fructose phosphotransferase transport system and delayed sporulation.
Assuntos
Butanóis/metabolismo , Butanóis/toxicidade , Clostridium beijerinckii/efeitos dos fármacos , Clostridium beijerinckii/genética , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Carbono/metabolismo , Clostridium beijerinckii/crescimento & desenvolvimento , Clostridium beijerinckii/metabolismo , Meios de Cultura/química , DNA Bacteriano/química , Frutose/metabolismo , Glucose/metabolismo , Inibidores do Crescimento/toxicidade , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Polimorfismo Genético , Solventes/metabolismo , Solventes/toxicidadeRESUMO
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Assuntos
Microbioma Gastrointestinal , Microbiota , HumanosRESUMO
The gut-microbe-derived metabolite trimethylamine N-oxide (TMAO) is increased by insulin resistance and associated with several sequelae of metabolic syndrome in humans, including cardiovascular, renal, and neurodegenerative disease. The mechanism by which TMAO promotes disease is unclear. We now reveal the endoplasmic reticulum stress kinase PERK (EIF2AK3) as a receptor for TMAO: TMAO binds to PERK at physiologically relevant concentrations; selectively activates the PERK branch of the unfolded protein response; and induces the transcription factor FoxO1, a key driver of metabolic disease, in a PERK-dependent manner. Furthermore, interventions to reduce TMAO, either by manipulation of the gut microbiota or by inhibition of the TMAO synthesizing enzyme, flavin-containing monooxygenase 3, can reduce PERK activation and FoxO1 levels in the liver. Taken together, these data suggest TMAO and PERK may be central to the pathogenesis of the metabolic syndrome.
Assuntos
Síndrome Metabólica/metabolismo , Metilaminas/metabolismo , eIF-2 Quinase/metabolismo , Animais , Microbioma Gastrointestinal/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Indóis/farmacologia , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Oxigenases/antagonistas & inibidoresRESUMO
Spore-forming solventogenic Clostridium spp. are receiving renewed attention due to their butanol production abilities. However, there is an absence of literature describing the preparation of dense, vigorous and homogeneous seed cultures of Clostridium spp., guaranteeing reproducibility during fermentation. Therefore, we performed a series of growth experiments of Clostridium beijerinckii NCIMB 8052 and its offspring SA-1 to evaluate the influence of inoculum age (harvest time) on the subsequent population's maximum specific growth rate, as a signal of population homogeneity. The organisms were cultivated in Reinforced Clostridial Medium and supplemented sweet sorghum juice. The best inoculum ages coincided with the late-exponential growth phase: between 9 and 11 h in the conditions tested. Additionally, the harvest time was delayed up to 4 h by pre-adapting the seed culture with 0.75 g L(-1) butyric acid. These findings were validated by performing a series of bench-top batch fermentations showcasing reproducibility in growth kinetics with 95% confidence limits. Overall, these experiments allowed us to understand the transient nature of seed cultures of C. beijerinckii NCIMB 8052 and SA-1, while enabling reproducibility and consistent culture performance.