Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Ceram Soc ; 98(6): 1829-1835, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27594704

RESUMO

Lead-free single crystal, (K, Na, Li)(Nb, Ta)O3:Mn, was successfully grown using top-seeded solution growth method. Complete matrix of dielectric, piezoelectric and elastic constants for [001]C poled single crystal was determined. The piezoelectric coefficient d33 measured by the resonance method was 545 pC/N, which is almost three times that of its ceramic counterpart. The values measured by the Berlincourt meter ( [Formula: see text]) and strain-field curve ( [Formula: see text]) were even higher. The differences were assumed to relate with the different extrinsic contributions of domain wall vibration and domain wall translation during the measurements by different approaches, where the intrinsic contribution (on the order of 539 pm/V) was supposed to be the same. The crystal has ultrahigh electromechanical coupling factor (k33 ~ 95%) and high ultrasound velocity, which make it promising for high frequency medical transducer applications.

2.
J Alloys Compd ; 640: 64-67, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25954059

RESUMO

The electrooptic and piezoelectric coupling effects in tetragonal relaxor-based ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 (PMN-0.38PT) and 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 (PZN-0.12PT) single-domain crystals have been analyzed by the coordinate transformation. The orientation dependence of the electrooptic and half-wave voltage was calculated based on the full sets of refractive indices, electrooptic and piezoelectric coefficients. The optimum orientation cuts for achieving the best electrooptic coefficient and half-wave voltage were found. The lowset half-wave voltage is only 76 V for the PMN-0.38PT single-domain crystal. Compared to commonly used electrooptic crystal LiNbO3, tetragonal relaxor-PT ferroelectric single-domain crystals are much superior for optical modulation applications because of their much higher linear electrooptic coefficients and substantially lower half-wave voltages when the piezoelectric strain influence is considered.

3.
J Appl Phys ; 116(4): 044105, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25161321

RESUMO

Domain structures and their evolution with temperature in the [001] C oriented (K,Na)(Nb,Ta)O3 (KNNT) single crystal have been studied before and after poling by polarizing light microscopy. The results indicate that the KNNT crystal is difficult to be completely poled by the room temperature poling process. The domain structure is rather stable in the orthorhombic phase, but exhibits substantial changes near the phase transition temperatures TO-T and TC. Narrower stripe domains are formed during both the orthorhombic-tetragonal and tetragonal-cubic phase transition processes, no intermediate phases were found during the phase transitions. The temperature dependence of the dielectric and piezoelectric properties were measured, and the influence of domain structures on the dielectric and electromechanical properties were quantified.

4.
Appl Phys Lett ; 105(21): 212902, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25489119

RESUMO

A self-consistent complete set of dielectric, piezoelectric, and elastic constants for single domain Ta modified (K, Na)NbO3 (KNN) crystal was determined. This full set constant for single domain KNN-based crystals allowed the prediction of orientation dependence of the longitudinal dielectric, piezoelectric, elastic coefficients, and electromechanical coupling factors. The maximum piezoelectric and electromechanical properties were found to exist near [001] C . In addition, material constants of [001] C poled domain engineered single crystal with 4 mm symmetry were experimentally measured and compared with the calculated values. Based on this, extrinsic contribution to the piezoelectricity was estimated to be ∼20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA