Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(10): 5795-5802, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867587

RESUMO

Stereo-defects present in stereo-regular polymers often diminish thermal and mechanical properties, and hence suppressing or eliminating them is a major aspirational goal for achieving polymers with optimal or enhanced properties. Here, we accomplish the opposite by introducing controlled stereo-defects to semicrystalline biodegradable poly(3-hydroxybutyrate) (P3HB), which offers an attractive biodegradable alternative to semicrystalline isotactic polypropylene but is brittle and opaque. We enhance the specific properties and mechanical performance of P3HB by drastically toughening it and also rendering it with the desired optical clarity while maintaining its biodegradability and crystallinity. This toughening strategy of stereo-microstructural engineering without changing the chemical compositions also departs from the conventional approach of toughening P3HB through copolymerization that increases chemical complexity, suppresses crystallization in the resulting copolymers, and is thus undesirable in the context of polymer recycling and performance. More specifically, syndio-rich P3HB (sr-P3HB), readily synthesized from the eight-membered meso-dimethyl diolide, has a unique set of stereo-microstructures comprising enriched syndiotactic [rr] and no isotactic [mm] triads but abundant stereo-defects randomly distributed along the chain. This sr-P3HB material is characterized by high toughness (UT = 96 MJ/m3) as a result of its high elongation at break (>400%) and tensile strength (34 MPa), crystallinity (Tm = 114 °C), optical clarity (due to its submicron spherulites), and good barrier properties, while it still biodegrades in freshwater and soil.

2.
Macromol Rapid Commun ; 43(13): e2200008, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182407

RESUMO

Chemically recyclable polymers have attracted increasing attention since they are promising materials in a circular economy, but such polymers appropriate for packaging applications are scarce. Here a combined thermal, mechanical, and transport (permeability and sorption) study is presented of a circular polymer system based on biobased trans-hexahydrophthalide which, upon polymerization, can lead to amorphous, homochiral crystalline, and nanocrystalline stereocomplex materials. This study uncovers their largely different transport properties of the same polymer but with different stereochemical arrangements and synergistic or conflicting effects of crystallinity on transport properties versus thermal and mechanical properties. Overall, the homocrystalline chiral polymer shows the best performance with an outstanding barrier character to gases and vapors, outperforming commercial poly(ethylene terephthalate) and polyethylene. The results presented herein show that it is possible to modify the crystalline structure of the same polymer to tune the mechanical and transport properties and generate multiple materials of different barrier characters.


Assuntos
Plásticos , Reciclagem , Gases , Polietilenotereftalatos , Polímeros , Embalagem de Produtos
3.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012075

RESUMO

Lactide-valerolactone copolymers have potential application in the packaging sector. Different copolymers were synthesized, and the kinetics of the copolymerization reactions and the microstructure of the copolymers were analysed. Lactide showed higher reactivity than valerolactone which leads to composition drift through the reaction. Thermal, mechanical and barrier properties of the selected copolymers were studied. Overall, the incorporation of valerolactone results in copolymers with higher ductility than poly(lactide) with intermediate water and oxygen permeability which makes these materials appropriate candidates for use in the packaging sector.

4.
Polymers (Basel) ; 11(7)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337091

RESUMO

In this work, a general, facile, and relatively low-cost method to produce electrically driven non-porous membranes by revalorization of recycled polyolefins is proposed. The polymer matrices are poly(propylene) (PP) and poly(ethylene) (PE) and their corresponding recycled samples, which are respectively mixed with carbon nanotubes (CNT). The performances of the elaborated nanocomposites are studied by morphological, rheological, and electrical conductivity tests. The Joule heating effect is evaluated by applying an electric field and recording the corresponding temperature rise. An increase of 90 °C is obtained in certain cases, which represents the highest temperature enhancement reached so far by the Joule effect in thermoplastics, to our knowledge. The work shows a route to develop stimulus (voltage)-response (temperature) materials with low cost and with potential applications in many fields. As an example, the increase of the permeability with temperature of membranes made of the indicated nanocomposites, is analyzed.

5.
Nat Commun ; 10(1): 3559, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395871

RESUMO

Plastics have become indispensable in modern life and the material of choice in packaging applications, but they have also caused increasing plastic waste accumulation in oceans and landfills. Although there have been continuous efforts to develop biodegradable plastics, the mechanical and/or transport properties of these materials still need to be significantly improved to be suitable for replacing conventional plastic packaging materials. Here we report a class of biorenewable and degradable plastics, based on copolymers of γ-butyrolactone and its ring-fused derivative, with competitive permeability and elongation at break compared to commodity polymers and superior mechanical and transport properties to those of most promising biobased plastics. Importantly, these materials are designed with full chemical recyclability built into their performance with desired mechanical and barrier properties, thus representing a circular economy approach to plastic packaging materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA