Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proteins ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243636

RESUMO

The recently discovered SWEET (Sugar Will Eventually be Exported Transporter) proteins are involved in the selective transport of monosaccharides and disaccharides. The prokaryotic counterparts, semiSWEETs, form dimers with each monomer forming a triple-helix transmembrane bundle (THB). The longer eukaryotic SWEETs have seven transmembrane helices with two THBs and a linker helix. Structures of semiSWEETs/SWEETs have been determined experimentally. Experimental studies revealed the role of plant SWEETs in vital physiological processes and identified residues responsible for substrate selectivity. However, SWEETs/semiSWEETs from metazoans and bacteria are not characterized. In this study, we used structure-based sequence alignment and compared more than 2000 SWEET/semiSWEETs from four different taxonomic groups. Conservation of residue/chemical property was examined at all positions. Properties of clades/subclades of phylogenetic trees from each taxonomic group were analyzed. Conservation pattern of known residues in the selectivity-filter was used to predict the substrate preference of plant SWEETs and some clusters of metazoans and bacteria. Some residues at the gating and substrate-binding regions, pore-facing positions and at the helix-helix interface are conserved across all taxonomic groups. Conservation of polar/charged residues at specific pore-facing positions, helix-helix interface and in loops seems to be unique for plant SWEETs. Overall, the number of conserved residues is less in metazoan SWEETs. Plant and metazoan SWEETs exhibit high conservation of four and three proline residues respectively in "proline tetrad." Further experimental studies can validate the predicted substrate selectivity and significance of conserved polar/charged/aromatic residues at structurally and functionally important positions of SWEETs/semiSWEETs in plants, metazoans and bacteria.

2.
Proteins ; 91(5): 679-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541866

RESUMO

Many steps in programmed cell death are evolutionarily conserved across different species. The Caenorhabditis elegans proteins CED-9, CED-4 and EGL-1 involved in apoptosis are respectively homologous to anti-apoptotic Bcl-2 proteins, Apaf-1 and the "BH3-only" pro-apototic proteins in mammals. In the linear apoptotic pathway of C. elegans, EGL-1 binding to CED-9 leads to the release of CED-4 from CED-9/CED-4 complex. The molecular events leading to this process are not clearly elucidated. While the structures of CED-9 apo, CED-9/EGL-1 and CED-9/CED-4 complexes are known, the CED-9/CED-4/EGL-1 ternary complex structure is not yet determined. In this work, we modeled this ternary complex and performed molecular dynamics simulations of six different systems involving CED-9. CED-9 displays differential dynamics depending upon whether it is bound to CED-4 and/or EGL-1. CED-4 exists as an asymmetric dimer (CED4a and CED4b) in CED-9/CED-4 complex. CED-4a exhibits higher conformational flexibility when simulated without CED-4b. Principal Component Analysis revealed that the direction of CED-4a's winged-helix domain motion differs in the ternary complex. Upon EGL-1 binding, majority of non-covalent interactions involving CARD domain in the CED-4a-CED-9 interface have weakened and only half of the contacts found in the crystal structure between α/ß domain of CED4a and CED-9 are found to be stable. Additional stable contacts in the ternary complex and differential dynamics indicate that winged-helix domain may play a key role in CED-4a's dissociation from CED-9. This study has provided a molecular level understanding of potential intermediate states that are likely to occur when CED-4a is released from CED-9.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Ligação ao Cálcio , Proteínas Repressoras , Animais , Apoptose , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/metabolismo
3.
Biophys J ; 118(4): 846-860, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31968229

RESUMO

Formate/nitrite transporters (FNTs) selectively transport monovalent anions and are found in prokaryotes and lower eukaryotes. They play a significant role in bacterial growth and act against the defense mechanism of infected hosts. Because FNTs do not occur in higher animals, they are attractive drug targets for many bacterial diseases. Phylogenetic analysis revealed that they can be classified into eight subgroups, two of which belong to the uncharacterized YfdC-α and YfdC-ß groups. Experimentally determined structures of FNTs belonging to different phylogenetic groups adopt the unique aquaporin-like hourglass helical fold. We considered the formate channel from Vibrio cholerae, the hydrosulphide channel from Clostridium difficile, and the uncharacterized channel from Escherichia coli (EcYfdC) to investigate the mechanism of transport and selectivity. Using equilibrium molecular dynamics and umbrella sampling studies, we determined temporal channel radius profiles, permeation events, and potential of mean force profiles of different substrates with the conserved central histidine residue in protonated or neutral form. Unlike the formate channel from V. cholerae and the hydrosulphide channel from C. difficile, molecular dynamics studies showed that the formate substrate was unable to enter the vestibule region of EcYfdC. Absence of a conserved basic residue and presence of acidic residues in the vestibule regions, conserved only in YfdC-α, were found to be responsible for high energy barriers for the anions to enter EcYfdC. Potential of mean force profiles generated for ammonia and ammonium ion revealed that EcYfdC can transport neutral solutes and could possibly be involved in the transport of cations analogous to the mechanism proposed for ammonium transporters. Although YfdC members belong to the FNT family, our studies strongly suggest that EcYfdC is not an anion channel. Absence or presence of specific charged residues at particular positions makes EcYfdC selective for neutral or possibly cationic substrates. Further experimental studies are needed to get a definitive answer to the question of the substrate selectivity of EcYfdC. This provides an example of membrane proteins from the same family transporting substrates of different chemical nature.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Canais Iônicos/genética , Ânions , Clostridioides difficile , Proteínas de Escherichia coli/genética , Formiatos , Nitritos , Filogenia
4.
Biochemistry ; 59(45): 4379-4394, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146015

RESUMO

Interactions between pro- and anti-apoptotic Bcl-2 proteins decide the fate of the cell. The BH3 domain of pro-apoptotic Bcl-2 proteins interacts with the exposed hydrophobic groove of their anti-apoptotic counterparts. Through their design and development, BH3 mimetics that target the hydrophobic groove of specific anti-apoptotic Bcl-2 proteins have the potential to become anticancer drugs. We have developed a novel computational method for designing sequences with BH3 domain features that can bind specifically to anti-apoptotic Mcl-1 or Bcl-XL. In this method, we retained the four highly conserved hydrophobic and aspartic residues of wild-type BH3 sequences and randomly substituted all other positions to generate a large number of BH3-like sequences. We modeled 20000 complex structures with Mcl-1 or Bcl-XL using the BH3-like sequences derived from five wild-type pro-apoptotic BH3 peptides. Peptide-protein interaction energies calculated from these models for each set of BH3-like sequences resulted in negatively skewed extreme value distributions. The selected BH3-like sequences from the extreme negative tail regions have highly favorable interaction energies with Mcl-1 or Bcl-XL. They are enriched in acidic and basic residues when they bind to Mcl-1 and Bcl-XL, respectively. With the charged residues often away from the binding interface, the overall electric field generated by the charged residues results in strong long-range electrostatic interaction energies between the peptide and the protein giving rise to high specificity. Cell viability studies of representative BH3-like peptides further validated the predicted specificity. This study has revealed the importance of non-hot spot residues in BH3-mimetic peptides in providing specificity to a particular anti-apoptotic protein.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Proteína bcl-X/química
5.
J Membr Biol ; 252(1): 17-29, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30470864

RESUMO

Major intrinsic protein (MIP) superfamily contains water-transporting AQP1 and glycerol-specific GlpF belonging to two major phylogenetic groups, namely aquaporins (AQPs) and aquaglyceroporins (AQGPs). MIP channels have six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). LE region contributes two residues to the aromatic/arginine (Ar/R) selectivity filter (SF) within the MIP channel. Bioinformatics analyses have shown that all AQGPs have an intra-helical salt-bridge (IHSB) in LE half-helix and all AQGPs and majority of AQPs have helix destabilizing Gly and/or Pro in the same region. In this paper, we mutated in silico the acidic and basic residues in GlpF to Ser and introduced salt-bridge interaction in AQP1 LE half-helix by substituting Ser residues at the equivalent positions with acidic and basic residues. We investigated the influence of IHSB in LE half-helix on the transport properties of GlpF and AQP1 mutant channels using molecular dynamics simulations. With IHSB abolished in LE half-helix, the GlpF mutant exhibited a significantly reduced water transport. In contrast, the introduction of IHSB in the two AQP1 mutants has increased water transport. Absence of salt-bridge in LE half-helix alters the SF geometry and results in a higher energy barrier for the solutes in the Ar/R selectivity filter. Presence/absence of IHSB in LE half-helix influences the channel transport properties and it is evident especially for the AQGPs. By modulating its helical flexibility, LE half-helix can perhaps play a regulatory role in transport either on its own or in conjunction with other extracellular regions.


Assuntos
Aquaporina 1/química , Aquaporinas/química , Modelos Moleculares , Conformação Proteica , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Mutação , Água/química
6.
BMC Genomics ; 18(1): 560, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738779

RESUMO

BACKGROUND: The monovalent anions formate, nitrite and hydrosulphide are main metabolites of bacterial respiration during anaerobic mixed-acid fermentation. When accumulated in the cytoplasm, these anions become cytotoxic. Membrane proteins that selectively transport these monovalent anions across the membrane have been identified and they belong to the family of Formate/Nitrite Transporters (FNTs). Individual members that selectively transport formate, nitrite and hydrosulphide have been investigated. Experimentally determined structures of FNTs indicate that they share the same hourglass helical fold with aquaporins and aquaglyceroporins and have two constriction regions, namely, cytoplasmic slit and central constriction. Members of FNTs are found in bacteria, archaea, fungi and protists. However, no FNT homolog has been identified in mammals. With FNTs as potential drug targets for many bacterial diseases, it is important to understand the mechanism of selectivity and transport across these transporters. RESULTS: We have systematically searched the sequence databases and identified 2206 FNT sequences from bacteria, archaea and eukaryotes. Although FNT sequences are very diverse, homology modeling followed by structure-based sequence alignment revealed that nearly one third of all the positions within the transmembrane region exhibit high conservation either as a group or at the level of individual residues across all three kingdoms. Phylogenetic analysis of prokaryotic FNT sequences revealed eight different subgroups. Formate, nitrite and hydrosulphide transporters respectively are clustered into two (FocA and FdhC), three (NirC-α, NirC-ß and NirC-γ) and one (HSC) subfamilies. We have also recognized two FNT subgroups (YfdC-α and YfdC-ß) with unassigned function. Analysis of taxonomic distribution indicates that each subfamily prefers specific taxonomic groups. Structure-based sequence alignment of individual subfamily members revealed that certain positions in the two constriction regions and some residues facing the interior show subfamily-specific conservation. We have also identified examples of FNTs with the two constriction regions formed by residues that are less frequently observed. We have developed dbFNT, a database of FNT models and associated details. dbFNT is freely available to scientific community. CONCLUSIONS: Taxonomic distribution and sequence conservation of FNTs exhibit subfamily-specific features. The conservation pattern in the central constriction and cytoplasmic slit in the open and closed states are distinct for YfdC and NirC subfamilies. The same is true for some residues facing the interior of the transporters. The specific residues in these positions can exert influence on the type of solutes that are transported by these proteins. With FNTs found in many disease-causing bacteria, the knowledge gained in this study can be used in the development and design of anti-bacterial drugs.


Assuntos
Sequência Conservada , Formiatos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Nitritos/metabolismo , Filogenia , Células Procarióticas/metabolismo , Citoplasma/metabolismo , Bases de Dados de Proteínas , Simulação de Dinâmica Molecular , Conformação Proteica
7.
Biophys J ; 110(9): 1967-79, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166805

RESUMO

Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.


Assuntos
Nitrogênio/química , Prolina/química , Proteínas/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Teoria Quântica
8.
Biochemistry ; 55(27): 3774-83, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27305350

RESUMO

The amino acid histidine can play a significant role in the structure and function of proteins. Its various functions include enzyme catalysis, metal binding activity, and involvement in cation-π, π-π, salt-bridge, and other types of noncovalent interactions. Although histidine's imidazole nitrogens (Nδ and Nε) are known to participate in hydrogen bond (HB) interactions as an acceptor or a donor, a systematic study of N-H···N HBs with the Nδ/Nε atom as the acceptor has not been conducted. In this study, we have examined two data sets of ultra-high-resolution (data set I) and very high-resolution (data set II) protein structures and identified 28 and 4017 examples of HBs of the N-H···Nδ/Nε type from both data sets involving histidine imidazole nitrogen as the acceptor. In nearly 70% of them, the main-chain N-H bond is the HB donor, and a majority of the examples are from the N-H group separated by two residues (Ni+2-Hi+2) from histidine. Quantum chemical calculations using model compounds were performed with imidazole and N-methylacetamide, and they assumed conformations from 19 examples from data set I with N-H···Nδ/Nε HBs. Basis set superposition error-corrected interaction energies varied from -5.0 to -6.78 kcal/mol. We also found that the imidazole nitrogen of 9% of histidine residues forming N-H···Nδ/Nε interactions in data set II participate in bifurcated HBs. Natural bond orbital analyses of model compounds indicate that the strength of each HB is mutually influenced by the other. Histidine residues involved in Ni+2-Hi+2···Nδi/Nεi HBs are frequently observed in a specific N-terminal capping position giving rise to a novel helix-capping motif. Along with their predominant occurrence in loop segments, we propose a new structural role for histidines in protein structures.


Assuntos
Histidina/química , Hidrogênio/química , Imidazóis/química , Nitrogênio/química , Proteínas/química , Catálise , Ligação de Hidrogênio , Modelos Moleculares
9.
Biochim Biophys Acta ; 1848(6): 1436-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797519

RESUMO

The superfamily of major intrinsic proteins (MIPs) includes aquaporin (AQP) and aquaglyceroporin (AQGP) and it is involved in the transport of water and neutral solutes across the membrane. Diverse MIP sequences adopt a unique hour-glass fold with six transmembrane helices (TM1 to TM6) and two half-helices (LB and LE). Loop E contains one of the two conserved NPA motifs and contributes two residues to the aromatic/arginine selectivity filter. Function and regulation of majority of MIP channels are not yet characterized. We have analyzed the loop E region of 1468 MIP sequences and their structural models from six different organism groups. They can be phylogenetically clustered into AQGPs, AQPs, plant MIPs and other MIPs. The LE half-helix in all AQGPs contains an intra-helical salt-bridge and helix-breaking residues Gly/Pro within the same helical turn. All non-AQGPs lack this salt-bridge but have the helix destabilizing Gly and/or Pro in the same positions. However, the segment connecting LE half-helix and TM6 is longer by 10-15 residues in AQGPs compared to all non-AQGPs. We speculate that this longer loop in AQGPs and the LE half-helix of non-AQGPs will be relatively more flexible and this could be functionally important. Molecular dynamics simulations on glycerol-specific GlpF, water-transporting AQP1, its mutant and a fungal AQP channel confirm these predictions. Thus two distinct regions of loop E, one in AQGPs and the other in non-AQGPs, seem to be capable of modulating the transport. These regions can also act in conjunction with other extracellular residues/segments to regulate MIP channel transport.


Assuntos
Aminoácidos/química , Aquaporinas/química , Sais/química , Sequência de Aminoácidos , Animais , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína
10.
J Struct Biol ; 187(1): 49-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24816369

RESUMO

Three-dimensional structures of biomolecules are stabilized by a large number of non-covalent interactions and some of them such as van der Waals, electrostatic and hydrogen bond interactions are well characterized. Delocalized π-electron clouds of aromatic residues are known to be involved in cation-π, CH-π, OH-π and π-π interactions. In proteins, many examples have been found in which the backbone carbonyl oxygen of one residue makes close contact with the aromatic center of aromatic residues. Quantum chemical calculations suggest that such contacts may provide stability to the protein secondary structures. In this study, we have systematically analyzed the experimentally determined high-resolution DNA crystal structures and identified 91 examples in which the aromatic center of one base is in close contact (<3.5Ǻ) with the oxygen atom of preceding (Group-I) or succeeding base (Group-II). Examples from Group-I are overwhelmingly observed and cytosine or thymine is the preferred base contributing oxygen atom in Group-I base pairs. A similar analysis of high-resolution RNA structures surprisingly did not yield many examples of oxygen-aromatic contact of similar type between bases. Ab initio quantum chemical calculations on compounds based on DNA crystal structures and model compounds show that interactions between the bases in base pairs with oxygen-aromatic contacts are energetically favorable. Decomposition of interaction energies indicates that dispersion forces are the major cause for energetically stable interaction in these base pairs. We speculate that oxygen-aromatic contacts in intra-strand base pairs in a DNA structure may have biological significance.


Assuntos
DNA/química , Oxigênio/química , Pareamento de Bases , Simulação por Computador , Cristalografia por Raios X , Citosina/química , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica , RNA/química , Eletricidade Estática , Termodinâmica , Timina/química
11.
BMC Evol Biol ; 14: 173, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25112373

RESUMO

BACKGROUND: Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. RESULTS: We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. CONCLUSIONS: Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.


Assuntos
Proteínas Fúngicas/genética , Fungos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Plantas/microbiologia , Simbiose
12.
Proteins ; 82(6): 1035-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24218065

RESUMO

Proteins belonging to Bcl-2 family regulate intrinsic cell death pathway. Although mammalian antiapoptotic Bcl-2 members interact with multiple proapoptotic proteins, the Caenorhabditis elegans Bcl-2 homolog CED-9 is known to have only two proapoptotic partners. The BH3-motif of proapoptotic proteins bind to the hydrophobic groove of prosurvival proteins formed by the Bcl-2 helical fold. CED-9 is also known to interact with CED-4, a homolog of the human cell death activator Apaf1. We have performed molecular dynamics simulations of CED-9 in two forms and compared the results with those of mammalian counterparts Bcl-XL, Bcl-w, and Bcl-2. Our studies demonstrate that the region forming the hydrophobic cleft is more flexible compared with the CED-4-binding region, and this is generally true for all antiapoptotic Bcl-2 proteins studied. CED-9 is the most stable protein during simulations and its hydrophobic pocket is relatively rigid explaining the absence of functional redundancy in CED-9. The BH3-binding region of Bcl-2 is less flexible among the mammalian proteins and this lends support to the studies that Bcl-2 binds to less number of BH3 peptides with high affinity. The C-terminal helix of CED-9 lost its helical character because of a large number of charged residues. We speculate that this region probably plays a role in intracellular localization of CED-9. The BH4-motif accessibility in CED-9 and Bcl-w is controlled by the loop connecting the first two helices. Although CED-9 adopts the same Bcl-2 fold, our studies highlight important differences in the dynamic behavior of CED-9 and mammalian antiapoptotic homologs.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2/química , Animais , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
13.
Nucleic Acids Res ; 40(Database issue): D362-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080560

RESUMO

The channel proteins belonging to the major intrinsic proteins (MIP) superfamily are diverse and are found in all forms of life. Water-transporting aquaporin and glycerol-specific aquaglyceroporin are the prototype members of the MIP superfamily. MIPs have also been shown to transport other neutral molecules and gases across the membrane. They have internal homology and possess conserved sequence motifs. By analyzing a large number of publicly available genome sequences, we have identified more than 1000 MIPs from diverse organisms. We have developed a database MIPModDB which will be a unified resource for all MIPs. For each MIP entry, this database contains information about the source, gene structure, sequence features, substitutions in the conserved NPA motifs, structural model, the residues forming the selectivity filter and channel radius profile. For selected set of MIPs, it is possible to derive structure-based sequence alignment and evolutionary relationship. Sequences and structures of selected MIPs can be downloaded from MIPModDB database which is freely available at http://bioinfo.iitk.ac.in/MIPModDB.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras/química , Motivos de Aminoácidos , Aminoácidos Aromáticos/química , Aquagliceroporinas/química , Aquagliceroporinas/genética , Aquaporinas/química , Aquaporinas/genética , Arginina/química , Humanos , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Filogenia , Alinhamento de Sequência
14.
ACS Bio Med Chem Au ; 4(3): 137-153, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911907

RESUMO

NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The ß-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The ß-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.

15.
Chem Asian J ; 19(6): e202301119, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38286758

RESUMO

We report three complexes of CdII and HgII with two purine rare tautomers, N9-(pyridin-2-ylmethyl)-N6-methoxyadenine, L1 and N7-(pyridin-2-ylmethyl)-N6-methoxyadenine, L2, highlighting diverse crystallographic signatures exhibited by them. Influence of substituents, binding sites, steric effects and metal salts on the different modes of binding enabled an insight into metal-nucleobase interactions. L1 interacted with two and three equivalents of Cd(NO3)2.4H2O and HgCl2, respectively, while L2 interacted with two equivalents of HgCl2, altogether leading to three different complexes (1 [C48H48Cd6N34O50], 2 [C12H12Cl4Hg2N6O] and 3 [C12H12Cl2HgN6O]) possessing varied dimensionality and stabilising interactions. The photoluminescent properties of these coordination frameworks have also been probed. Notably, nanoring-like structures were obtained, as a result of self-assembly of 3 when investigated by transmission electron microscopy, additionally supported by molecular dynamics simulations.

16.
Database (Oxford) ; 20232023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913438

RESUMO

Aquaporins and aquaglyceroporins belong to the superfamily of major intrinsic proteins (MIPs), and they transport water and other neutral solutes such as glycerol. These channel proteins are involved in vital physiological processes and are implicated in several human diseases. Experimentally determined structures of MIPs from diverse organisms reveal a unique hour-glass fold with six transmembrane helices and two half-helices. MIP channels have two constrictions formed by Asn-Pro-Ala (NPA) motifs and aromatic/arginine selectivity filters (Ar/R SFs). Several reports have found associations among single-nucleotide polymorphisms (SNPs) in human aquaporins (AQPs) with diseases in specific populations. In this study, we have compiled 2798 SNPs that give rise to missense mutations in 13 human AQPs. To understand the nature of missense substitutions, we have systematically analyzed the pattern of substitutions. We found several examples in which substitutions could be considered as non-conservative that include small to big or hydrophobic to charged residues. We also analyzed these substitutions in the context of structure. We have identified SNPs that occur in NPA motifs or Ar/R SFs, and they will most certainly disrupt the structure and/or transport properties of human AQPs. We found 22 examples in which missense SNP substitutions that are mostly non-conservative in nature have given rise to pathogenic conditions as found in the Online Mendelian Inheritance in Man database. It is most likely that not all missense SNPs in human AQPs will result in diseases. However, understanding the effect of missense SNPs on the structure and function of human AQPs is important. In this direction, we have developed a database dbAQP-SNP that contains information about all 2798 SNPs. This database has several features and search options that can help the user to find SNPs in specific positions of human AQPs including the functionally and/or structurally important regions. dbAQP-SNP (http://bioinfo.iitk.ac.in/dbAQP-SNP) is freely available to the academic community. Database URL http://bioinfo.iitk.ac.in/dbAQP-SNP.


Assuntos
Aquaporinas , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Aquaporinas/genética , Aquaporinas/química , Aquaporinas/metabolismo , Estrutura Secundária de Proteína
17.
J Chem Inf Model ; 51(12): 3208-16, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22017310

RESUMO

A fully folded functional protein is stabilized by several noncovalent interactions. When a protein undergoes conformational motions, the existing noncovalent interactions may be maintained. They may also break or new interactions may be formed. Knowledge of the dynamical nature of the different types of noncovalent interactions is extremely important to understand the structural stability, function, and folding of a protein. There are experimental limitations to investigate the dynamics of different noncovalent interactions simultaneously in a biomolecule. We have carried out molecular dynamics simulations on four different proteins, two belonging to all-α class proteins and the other two are representatives of all-ß class proteins. The dynamical nature of eight different noncovalent interactions was studied by monitoring the maximum residence time (MRT) and lifetime (LT). The conventional hydrogen bonds are the dominant interactions in all four proteins, and the majority of those formed between the main-chain atoms were maintained during most of the simulation time with MRT greater than 10 ns. Such interactions with more than 1 ns lifetime provide stability to the secondary structures, and hence they are responsible for the overall stability of the protein. The weak C-H···O hydrogen bond is the next major type of interactions. However, a large number of such interactions are observed between the main-chain atoms only in all-ß proteins as interstrand interactions, and, surprisingly, they are observed during most part of the simulation although their average lifetime is only about 20 to 30 ps. The strong cation···π and salt-bridge interactions are present few in number. However, in many cases they are almost uninterrupted indicating the higher strength of these interactions. Four other interactions involving the π-electron cloud of aromatic rings are very small in number, and, in many cases, their presence is not maintained throughout the simulation. Our results clearly indicate that the weak C-H···O interactions between the main-chain atoms are the distinguishing factor between the all-α and all-ß class of proteins, and these interstrand interactions can provide additional stability to all-ß protein structures. Based on these results, we hypothesize that such weak C-H···O interstrand interactions could play a major role in providing stability to amyloid type of aggregates that are responsible for the pathological state of many proteins.


Assuntos
Amiloide/química , Bactérias/química , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
18.
J Comput Aided Mol Des ; 25(5): 413-26, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21523491

RESUMO

The B-cell lymphoma 2 (Bcl-2) family of proteins regulates the intrinsic pathway of apoptosis. Interactions between specific anti- and pro-apoptotic Bcl-2 proteins determine the fate of a cell. Anti-apoptotic Bcl-2 proteins have been shown to be over-expressed in certain cancers and they are attractive targets for developing anti-cancer drugs. Peptides from the BH3 region of pro-apoptotic proteins have been shown to interact with anti-apoptotic Bcl-2 proteins and induce biological activity similar to that observed in parent proteins. However, the specificity of BH3 peptides derived from different pro-apoptotic proteins differ for different anti-apoptotic Bcl-2 proteins. In this study, we have investigated the relationship between the stable helical nature of BH3 peptides and their affinities to Bcl-X(L), an anti-apoptotic Bcl-2 protein. We have carried out molecular dynamics simulations of six BH3 peptides derived from Bak, Bad and Bim pro-apoptotic proteins for a period of 50 ns each in aqueous medium. Due to the amphipathic nature of BH3 peptides, the hydrophobic residues on the hydrophobic face tend to cluster together in all BH3 peptides. While this process resulted in a complete loss of helical structure in 16-mer Bak and 16-mer Bad wild type peptides, stabilizing interactions in the hydrophilic face of the BH3 peptides and capping interactions helped to maintain partial helical character in 16-mer Bad mutant and 16-mer Bim peptides. The latter two 16-mer peptides exhibit higher affinity for Bcl-X(L). Similarly the longer BH3 peptides, 25-mer Bad and 33-mer Bim, also resulted in smaller and stable helical fragments and their helical conformation is stabilized by interactions between residues in the solvent-exposed hydrophilic half of the peptide. The stable nature of helical segment in a BH3 peptide can be directly correlated to its binding affinity and the helical region encompassed the highly conserved Leu residue. We propose that upon approaching the hydrophobic groove of anti-apoptotic proteins, a longer helix will be induced in high affinity BH3 peptides by extending the smaller stable helical segments around the conserved Leu residue in both N- and C-terminal regions. The results reported in this study will have implications in developing peptide-based inhibitors for anti-apoptotic Bcl-2 proteins.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína X Associada a bcl-2/química , Proteína de Morte Celular Associada a bcl/química , Proteína bcl-X/química , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Simulação por Computador , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Especificidade por Substrato
19.
ACS Omega ; 6(41): 26976-26989, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693118

RESUMO

Viruses have evolved strategies to prevent apoptosis of infected cells at early stages of infection. The viral proteins (vBcl-2s) from specific viral genes adopt a helical fold that is structurally similar to that of mammalian antiapoptotic Bcl-2 proteins and exhibit little sequence similarity. Hence, vBcl-2 homologues are attractive targets to prevent viral infection. However, very few studies have focused on developing inhibitors for vBcl-2 homologues. In this study, we have considered two vBcl-2 homologues, A179L from African swine fever virus and BHRF1 from Epstein-Barr virus. We generated two sets of 8000 randomized BH3-like sequences from eight wild-type proapoptotic BH3 peptides. During this process, the four conserved hydrophobic residues and an Asp residue were retained at their respective positions, and all other positions were substituted randomly without any bias. We constructed 8000 structures each for A179L and BHRF1 in complex with BH3-like sequences. Histograms of interaction energies calculated between the peptide and the protein resulted in negatively skewed distributions. The BH3-like peptides with high helical propensities selected from the negative tail of the respective interaction energy distributions exhibited more favorable interactions with A179L and BHRF1, and they are rich in basic residues. Molecular dynamics studies and electrostatic potential maps further revealed that both acidic and basic residues favorably interact with A179L, while only basic residues have the most favorable interactions with BHRF1. As in mammalian homologues, the role of long-range interactions and nonhotspot residues has to be taken into account while designing specific BH3-mimetic inhibitors for vBcl-2 homologues.

20.
Biochemistry ; 49(11): 2574-84, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20141168

RESUMO

The Bcl-2 family of proteins regulates the intrinsic pathway of apoptosis and plays a significant role in mitochondrial outer membrane permeabilization. Bcl-2 homologues belonging to both anti- and pro-apoptotic classes have been identified in diverse organisms. While anti-apoptotic Bcl-2 proteins possess up to four BH sequence domains (BH1-BH4), the pro-apoptotic counterparts have either three BH (BH1-BH3) domains or only the BH3 domain. Many anti-apoptotic viral homologues do not seem to have any detectable BH homology regions and exhibit a very low level of sequence identity with other Bcl-2 family members. However, structures determined for several Bcl-2 anti- and pro-apoptotic proteins and their viral homologues show a remarkably conserved helical fold characterized by a central hydrophobic helix surrounded by five or six amphipathic helices. In this study, we have analyzed 16 nonredundant Bcl-2 structures from human, mouse, Caenorhabditis elegans, and five different viral species. While the length of the central hydrophobic helix is preserved in all the Bcl-2 structures, variations in length are observed for other helices. We performed multiple-structure alignment of all 16 structures. Eighty structurally equivalent positions, the bulk of them in the helical regions, constituted the ungapped blocks in the structure-based sequence alignment. Analysis of helix bundle geometry indicates that helix-helix packing differed in different Bcl-2 structures. This is presumably to accommodate disparate residue substitutions. Residue properties such as solvent accessibility, conservation of chemical nature, and/or size and involvement in interhelical interactions were analyzed in each position of the ungapped alignment regions. A sequence motif made up of small amino acids has been detected in the central helix that is proposed to be important for helix-helix association. We have found that residues in 22 positions in the helical regions are buried, exhibit conservation in hydrophobicity and/or size, and participate in interhelical interactions in at least 12 of the 16 structures studied. We also found 15 additional positions in which residues exhibit two of the three properties investigated. We suggest that these positions constitute the important structural core in the diverse Bcl-2 family members and could play a significant role in the folding of the protein. Results of our studies have been used in the identification of three putative Bcl-2 homologues from three different viral organisms. This study will help in the genome-wide identification of hitherto unrecognized Bcl-2 family members, especially in viral genomes.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Alinhamento de Sequência , Solventes/química , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA