Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 72(6): 508-520, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35677292

RESUMO

Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.

2.
Environ Sci Technol ; 51(24): 14244-14253, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29131600

RESUMO

Freshwater mussels are vital components of stream ecosystems, yet remain threatened. Thus, timely and accurate species counts are critical for proper conservation and management. Mussels live in stream sediments and can be challenging to survey given constraints related to water depth, flow, and time of year. The use of environmental DNA (eDNA) to monitor mussel distributions and diversity is a promising tool. Before it can be used as a monitoring tool, however, we need to know how much eDNA mussels shed into their environment and how long the eDNA persists. Here, we present a novel application of eDNA to estimate both the presence/absence and abundance of a freshwater mussel species, Lampsilis siliquoidea. The eDNA shedding and decay rates reported within are the first for freshwater mussels. We determined that eDNA shedding was statistically similar across mussel densities, but that first-order decay constants varied between experimental treatments. Finally, we effectively modeled downstream transport of eDNA and present a model that can be used as a complementary tool to estimate mussel density. Our results suggest that eDNA has the potential to be a complementary tool to survey mussels and enhance current efforts to monitor and protect freshwater mussel biodiversity.


Assuntos
Bivalves , DNA/análise , Monitoramento Ambiental , Animais , Biodiversidade , Água Doce , Rios
4.
Ecosystems ; 21: 521-535, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32461736

RESUMO

Differences in animal distributions and metabolic demands can influence energy and nutrient flow in an ecosystem. Through taxa-specific nutrient consumption, storage, and remineralization, animals may influence energy and nutrient pathways in an ecosystem. Here we show these taxa-specific traits can drive biogeochemical cycles of nutrients and alter ecosystem primary production and metabolism, using riverine systems that support heterogeneous freshwater mussel aggregations. Freshwater unionid mussels occur as distinct, spatially heterogeneous, dense aggregations in rivers. They may influence rates of production and respiration because their activities are spatially concentrated within given stream reaches. Previous work indicates that mussels influence nutrient limitation patterns, algal species composition, and producer and primary consumer biomass. Here, we integrate measures of organismal rates, stoichiometry, community-scaled rates, and ecosystem rates, to determine the relative source-sink nutrient dynamics of mussel aggregations and their influence on net ecosystem processes. We studied areas with and without mussel aggregations in three nitrogen-limited rivers in southeastern Oklahoma, USA. We measured respiration and excretion rates of mussels and collected a subset of samples for tissue chemistry and for thin sectioning of the shell to determine growth rates at each site. This allowed us to assess nutrient remineralization and nutrient sequestration by mussels. These rates were scaled to the community. We also measured stream metabolism at three sites with and without mussels. We demonstrated that mussel species have distinct stoichiometric traits, vary in their respiration rates, and that mussel aggregations influence nutrient cycling and productivity. Across all mussel aggregations, we found that mussels excreted more nitrogen than they sequestered into tissue and excreted more phosphorus than they sequestered except at one site. Furthermore, gross primary productivity was significantly greater at reaches with mussels. Collectively, our results indicate that mussels have ecosystem-level impacts on nutrient availability and production in nutrient-limited rivers. Within these streams, mussels are affecting the movement of nutrients and altering nutrient spiralling.

5.
Aquat Biosyst ; 9(1): 6, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23452382

RESUMO

BACKGROUND: Freshwater mussels remain among the most imperiled species in North America due primarily to habitat loss or degradation. Understanding how mussels respond to habitat changes can improve conservation efforts. Mussels deposit rings in their shell in which age and growth information can be read, and thus used to evaluate how mussels respond to changes in habitat. However, discrepancies between methodological approaches to obtain life history information from growth rings has led to considerable uncertainty regarding the life history characteristics of many mussel species. In this study we compared two processing methods, internal and external ring examination, to obtain age and growth information of two populations of mussels in the St. Croix River, MN, and evaluated how mussel growth responded to changes in the operation of a hydroelectric dam. RESULTS: External ring counts consistently underestimated internal ring counts by 4 years. Despite this difference, internal and external growth patterns were consistent. In 2000, the hydroelectric dam switched from operating on a peaking schedule to run-of-the-river/partial peaking. Growth patterns between an upstream and downstream site of the dam were similar both before and after the change in operation. At the downstream site, however, older mussels had higher growth rates after the change in operation than the same sized mussels collected before the change. CONCLUSIONS: Because growth patterns between internal and external processing methods were consistent, we suggest that external processing is an effective method to obtain growth information despite providing inaccurate age information. External processing is advantageous over internal processing due to its non-destructive nature. Applying this information to analyze the influence of the operation change in the hydroelectric dam, we suggest that changing to run-of-the-river/partial peaking operation has benefited the growth of older mussels below the dam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA