Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884405

RESUMO

It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations.

2.
Langmuir ; 39(30): 10395-10405, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462925

RESUMO

Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based comb polyelectrolytes are routinely used to alter the particle dispersion state, water demand, and rheology of similar suspensions (e.g., ordinary portland cement suspensions) that feature a high pH and high ionic strength, their use to control portlandite suspension rheology has not been elucidated. This study combines adsorption isotherms and rheological measurements to elucidate the role of PCE composition (i.e., charge density, side chain length, and grafting density) in controlling the extent of PCE adsorption, particle flocculation, suspension yield stress, and thermal response of portlandite suspensions. We show that longer side-chain PCEs are more effective in affecting suspension viscosity and yield stress, in spite of their lower adsorption saturation limit and fractional adsorption. The superior steric hindrance induced by the longer side chain PCEs results in better efficacy in mitigating particle aggregation even at low dosages. However, when dosed at optimal dosages (i.e., a dosage that induces a dynamically equilibrated dispersion state of particle aggregates), different PCE-dosed portlandite suspensions exhibit identical fractal structuring and rheological behavior regardless of the side chain length. Furthermore, it is shown that the unusual evolution of the rheological response of portlandite suspensions with temperature can be tailored by adjusting the PCE dosage. The ability of PCEs to modulate the rheology of aggregating charged particle suspensions can be generally extended to any colloidal suspension with a strong screening of repulsive electrostatic interactions.

3.
J Chem Phys ; 157(23): 234501, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550033

RESUMO

The precipitation of calcium carbonate (CaCO3) is a key mechanism in carbon capture applications relying on mineralization. In that regard, Ca-rich cementitious binders offer a unique opportunity to act as a large-scale carbon sink by immobilizing CO2 as calcium carbonate by mineralization. However, the atomistic mechanism of calcium carbonate formation is still not fully understood. Here, we study the atomic scale nucleation mechanism of an early stage amorphous CaCO3 gel based on reactive molecular dynamics (MD) simulations. We observe that reactive MD offers a notably improved description of this reaction as compared to classical MD, which allows us to reveal new insights into the structure of amorphous calcium carbonate gels and formation kinetics thereof.


Assuntos
Carbonato de Cálcio , Simulação de Dinâmica Molecular , Carbonato de Cálcio/química
4.
Langmuir ; 36(36): 10811-10821, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799535

RESUMO

Temperature is well known to affect the aggregation behavior of colloidal suspensions. This paper elucidates the temperature dependence of the rheology of portlandite (calcium hydroxide: Ca(OH)2) suspensions that feature a high ionic strength and a pH close to the particle's isoelectric point. In contrast to the viscosity of the suspending medium (saturated solution of Ca(OH)2 in water), the viscosity of Ca(OH)2 suspensions is found to increase with elevating temperature. This behavior is shown to arise from the temperature-induced aggregation of polydisperse Ca(OH)2 particulates because of the diminution of electrostatic repulsive forces with increasing temperature. The temperature dependence of the suspension viscosity is further shown to diminish with increasing particle volume fraction as a result of volumetric crowding and the formation of denser fractal structures in the suspension. Significantly, the temperature-dependent rheological response of suspensions is shown to be strongly affected by the suspending medium's properties, including ionic strength and ion valence, which affect aggregation kinetics. These outcomes provide new insights into aggregation processes that affect the temperature-dependent rheology of portlandite-based and similar suspensions that feature strong charge screening behavior.

5.
Soft Matter ; 16(16): 3929-3940, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32240280

RESUMO

The remarkable increase in the flow resistance of dense suspensions can hinder 3D-printing processes on account of flow cessation in the extruder, and filament fragility/rupture following deposition. Understanding the nature of rheological changes that occur is critical to manipulate flow conditions or to dose flow modifiers for 3D-printing. Therefore, this paper elucidates the influences of clay particulates on controlling flow cessation and the shape stability of dense cementing suspensions that typically feature poor printability. A rope coiling method was implemented with varying stand-off distances to probe the buckling stability and tendency to fracture of dense suspensions that undergo stretching and bending during deposition. The contributions of flocculation and short-term percolation due to the kinetics of structure formation to deformation rate were deconvoluted using a stepped isostress method. It is shown that the shear stress indicates a divergence with a power-law scaling when the particle volume fraction approaches the jamming limit; φ → φj ≈ φmax. Such a power-law divergence of the shear stress decreases by a factor of 10 with increasing clay dosage. Such behavior in clay-containing suspensions arises from a decrease in the relative packing fraction (φ/φmax) and the formation of fractally-architected aggregates with stronger interparticle interactions, whose uniform arrangement controls flow cessation in the extruder and suspension homogeneity, thereby imparting greater buckling stability. The outcomes offer new insights for assessing/improving the extrudability and printability behavior during slurry-based 3D-printing process.

6.
Soft Matter ; 16(14): 3425-3435, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196056

RESUMO

In spite of their high surface charge (zeta potential ζ = +34 mV), aqueous suspensions of portlandite (calcium hydroxide: Ca(OH)2) exhibit a strong tendency to aggregate, and thereby present unstable suspensions. While a variety of commercial dispersants seek to modify the suspension stability and rheology (e.g., yield stress, viscosity), it remains unclear how the performance of electrostatically and/or electrosterically based additives is affected in aqueous environments having either a high ionic strength and/or a pH close to the particle's isoelectric point (IEP). We show that the high native ionic strength (pH ≈ 12.6, IEP: pH ≈ 13) of saturated portlandite suspensions strongly screens electrostatic forces (Debye length: κ-1 = 1.2 nm). As a result, coulombic repulsion alone is insufficient to mitigate particle aggregation and affect rheology. However, a longer-range geometrical particle-particle exclusion that arises from electrosteric hindrance caused by the introduction of comb polyelectrolyte dispersants is very effective at altering the rheological properties and fractal structuring of suspensions. As a result, comb-like dispersants that stretch into the solvent reduce the suspension's yield stress by 5× at similar levels of adsorption as compared to linear dispersants, thus enhancing the critical solid loading (i.e., at which jamming occurs) by 1.4×. Significantly, the behavior of diverse dispersants is found to be inherently related to the thickness of the adsorbed polymer layer on particle surfaces. These outcomes inform the design of dispersants for concentrated suspensions that present strong charge screening behavior.

7.
J Chem Phys ; 153(1): 014501, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640807

RESUMO

Concrete gains its strength from the precipitation of a calcium-alumino-silicate-hydrate (C-A-S-H) colloidal gel, which acts as its binding phase. However, despite concrete's ubiquity in the building environment, the atomic-scale mechanism of C-A-S-H precipitation is still unclear. Here, we use reactive molecular dynamics simulations to model the early-age precipitation of a C-A-S-H gel. We find that, upon gelation, silicate and aluminate precursors condensate and polymerize to form an aluminosilicate gel network. Notably, we demonstrate that the gelation reaction is driven by the existence of a mismatch of atomic-level internal stress between Si and Al polytopes, which are initially experiencing some local tension and compression, respectively. The polymerization of Si and Al polytopes enables the release of these competitive stresses.

8.
Nano Lett ; 19(8): 5036-5043, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31276418

RESUMO

For the past 30 years, thin-film membrane composites have been the state-of-the-art technology for reverse osmosis, nanofiltration, ultrafiltration, and gas separation. However, traditional membrane casting techniques, such as phase inversion and interfacial polymerization, limit the types of material that are used for the membrane separation layer. Here, we describe a novel thin-film liftoff (T-FLO) technique that enables the fabrication of thin-film composite membranes with new materials for desalination, organic solvent nanofiltration, and gas separation. The active layer is cast separately from the porous support layer, allowing for the tuning of the thickness and chemistry of the active layer. A fiber-reinforced, epoxy-based resin is then cured on top of the active layer to form a covalently bound support layer. Upon submersion in water, the cured membrane lifts off from the substrate to produce a robust, freestanding, asymmetric membrane composite. We demonstrate the fabrication of three novel T-FLO membranes for chlorine-tolerant reverse osmosis, organic solvent nanofiltration, and gas separation. The isolable nature of support and active-layer formation paves the way for the discovery of the transport and selectivity properties of new polymeric materials. This work introduces the foundation for T-FLO membranes and enables exciting new materials to be implemented as the active layers of thin-film membranes, including high-performance polymers, two-dimensional materials, and metal-organic frameworks.

9.
Langmuir ; 35(48): 15651-15660, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31454249

RESUMO

Dissolution of mineral surfaces at asymmetric solid-liquid-solid interfaces in aqueous solutions occurs in technologically relevant processes, such as chemical/mechanical polishing (CMP) for semiconductor fabrication, formation and corrosion of structural materials, and crystallization of materials relevant to heterogeneous catalysis or drug delivery. In some such processes, materials at confined interfaces exhibit dissolution rates that are orders of magnitude larger than dissolution rates of isolated surfaces. Here, the dissolution of silica and alumina in close proximity to a charged gold surface or mica in alkaline solutions of pH 10-11 is shown to depend on the difference in electrostatic potentials of the surfaces, as determined from measurements conducted using a custom-built electrochemical pressure cell and a surface forces apparatus (SFA). The enhanced dissolution is proposed to result from overlap of the electrostatic double layers between the dissimilar charged surfaces at small intersurface separation distances (<1 Debye length). A semiquantitative model shows that overlap of the electric double layers can change the magnitude and direction of the electric field at the surface with the less negative potential, which results in an increase in the rate of dissolution of that surface. When the surface electrochemical properties were changed, the dissolution rates of silica and alumina were increased by up to 2 orders of magnitude over the dissolution rates of isolated compositionally similar surfaces under otherwise identical conditions. The results provide new insights on dissolution processes that occur at solid-liquid-solid interfaces and yield design criteria for controlling dissolution through electrochemical modification, with relevance to diverse technologies.

10.
J Chem Phys ; 148(23): 234504, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29935513

RESUMO

The sol-gel method is an attractive technique to synthesize homogeneous silicate glasses with high purity while relying on a lower synthesis temperature than in the melt-quench method. However, the mechanism and kinetics of the condensation of the silicate network in aqueous solution remain unclear. Here, based on reactive molecular dynamics simulations (ReaxFF), we investigate the sol-gel condensation kinetics of a silica glass. The influence of the potential parametrization and system size is assessed. Our simulation methodology is found to offer good agreement with experiments. We show that the aqueous concentration of the Si(OH)4 precursors and the local degree of polymerization of the Si atoms play a crucial role in controlling the condensation activation energy. Based on our simulations, we demonstrate that the gelation reaction is driven by the existence of some local atomic stress that gets released upon condensation.

11.
J Chem Phys ; 148(7): 074503, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471647

RESUMO

The surface reactivity and hydrophilicity of silicate materials are key properties for various industrial applications. However, the structural origin of their affinity for water remains unclear. Here, based on reactive molecular dynamics simulations of a series of artificial glassy silica surfaces annealed at various temperatures and subsequently exposed to water, we show that silica exhibits a hydrophilic-to-hydrophobic transition driven by its silanol surface density. By applying topological constraint theory, we show that the surface reactivity and hydrophilic/hydrophobic character of silica are controlled by the atomic topology of its surface. This suggests that novel silicate materials with tailored reactivity and hydrophilicity could be developed through the topological nanoengineering of their surface.

12.
J Chem Phys ; 149(9): 094501, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195301

RESUMO

Amorphous TiO2 (a-TiO2) could offer an attractive alternative to conventional crystalline TiO2 phases for photocatalytic applications. However, the atomic structure of a-TiO2 remains poorly understood with respect to that of its crystalline counterparts. Here, we conduct some classical molecular dynamics simulations of a-TiO2 based on a selection of empirical potentials. We show that, on account of its ability to dynamically assign the charge of each atom based on its local environment, the second-moment tight-binding charge equilibration potential yields an unprecedented agreement with available experimental data. Based on these simulations, we investigate the degree of order and disorder in a-TiO2. Overall, the results suggest that a-TiO2 features a large flexibility in its local topology, which may explain the high sensitivity of its structure to the synthesis method being used.

13.
J Environ Manage ; 217: 278-287, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29609144

RESUMO

Cementitious binders are often used to immobilize industrial wastes such as residues of coal combustion. Such immobilization stabilizes wastes that contain contaminants by chemical containment, i.e., by uptake of contaminants into the cementitious reaction products. Expectedly, the release ("leachability") of contaminants is linked to: (i) the stability of the matrix (i.e., its resistance to decomposition on exposure to water), and, (ii) its porosity, which offers a pathway for the intrusion of water and egress of contaminant species. To examine the effects of the matrix chemistry on its suitability for immobilization, an equilibrium thermodynamics-based approach is demonstrated for cementitious formulations based on: ordinary portland cement (OPC), calcium aluminate cement (CAC) and alkali activated fly ash (AFA) binding agents. First, special focus is placed on computing the equilibrium phase assemblages using the bulk reactant compositions as an input. Second, the matrix's stability is assessed by simulating leaching that is controlled by progressive dissolution and precipitation of solids across a range of liquid (leachant)-to-(reaction product) solid (l/s) ratios and leachant pH's; e.g., following the LEAF 1313 and 1316 protocols. The performance of each binding formulation is evaluated based on the: (i) relative ability of the reaction products to chemically bind the contaminant(s), (ii) porosity of the matrix which correlates to its hydraulic conductivity, and, (iii) the extent of matrix degradation that follows leaching and which impact the rate and extent of release of potential contaminants. In this manner, the approach enables rapid, parametric assessment of a wide-range of stabilization solutions with due consideration of the matrix's mineralogy, porosity, and the leaching (exposure) conditions.


Assuntos
Carvão Mineral , Eliminação de Resíduos/métodos , Cinza de Carvão , Materiais de Construção , Resíduos Industriais , Termodinâmica
14.
Phys Rev Lett ; 119(9): 095501, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949559

RESUMO

Despite the dramatic increase of viscosity as temperature decreases, some glasses are known to feature room-temperature relaxation. However, the structural origin of this phenomenon-known as the "thermometer effect"-remains unclear. Here, based on accelerated molecular dynamics simulations of alkali silicate glasses, we show that both enthalpy and volume follow stretched exponential decay functions upon relaxation. However, we observe a bifurcation of their stretching exponents, with ß=3/5 and 3/7 for enthalpy and volume relaxation, respectively, in agreement with Phillips's topological diffusion-trap model. Based on these results, we demonstrate that the thermometer effect is a manifestation of the mixed alkali effect. We show that relaxation is driven by the existence of stressed local structural instabilities in mixed alkali glasses. This driving force is found to be at a maximum when the concentrations of each alkali atom equal each other, which arises from a balance between the concentration of each alkali atom and the magnitude of the local stress that they experience.

15.
J Phys Chem A ; 121(41): 7835-7845, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942651

RESUMO

Albite (NaAlSi3O8), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar+-implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

16.
J Chem Phys ; 146(20): 204502, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571337

RESUMO

Irradiation and vitrification can both result in the disordering of minerals. However, it remains unclear whether these effects are comparable or if the glassy state represents an upper limit for irradiation-induced disordering. By reactive molecular dynamics simulations, we compare the structure of irradiated quartz to that of glassy silica. We show that although they share some degree of similarity, the structure of irradiated quartz and glassy silica differs from each other, both at the short- (<3 Å) and the medium-range (>3 Å and <10 Å). In particular, the atomic network of irradiated quartz is found to comprise coordination defects, edge-sharing units, and large rings, which are absent from glassy silica. These results highlight the different nature of irradiation- and vitrification-induced disordering.

17.
J Chem Phys ; 147(7): 074501, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830161

RESUMO

Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

18.
J Am Ceram Soc ; 100(7): 2746-2773, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28966345

RESUMO

In a book published in 1906, Richard Meade outlined the history of portland cement up to that point1. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20th century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?

19.
Cem Concr Res ; 101: 82-92, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29104300

RESUMO

Chloride-induced corrosion is a major cause of degradation of reinforced concrete infrastructure. While the binding of chloride ions (Cl-) by cementitious phases is known to delay corrosion, this approach has not been systematically exploited as a mechanism to increase structural service life. Recently, Falzone et al. [Cement and Concrete Research72, 54-68 (2015)] proposed calcium aluminate cement (CAC) formulations containing NO3-AFm to serve as anion exchange coatings that are capable of binding large quantities of Cl- ions, while simultaneously releasing corrosion-inhibiting NO3- species. To examine the viability of this concept, Cl- binding isotherms and ion-diffusion coefficients of a series of hydrated CAC formulations containing admixed Ca(NO3)2 (CN) are quantified. This data is input into a multi-species Nernst-Planck (NP) formulation, which is solved for a typical bridge-deck geometry using the finite element method (FEM). For exposure conditions corresponding to seawater, the results indicate that Cl- scavenging CAC coatings (i.e., top-layers) can significantly delay the time to corrosion (e.g., 5 ≤ df ≤ 10, where df is the steel corrosion initiation delay factor [unitless]) as compared to traditional OPC-based systems for the same cover thickness; as identified by thresholds of Cl-/OH- or Cl-/NO3- (molar) ratios in solution. The roles of hindered ionic diffusion, and the passivation of the reinforcing steel rendered by NO3- are also discussed.

20.
Langmuir ; 32(18): 4434-9, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27108867

RESUMO

Like many others, silicate solids dissolve when placed in contact with water. In a given aqueous environment, the dissolution rate depends on the composition and the structure of the solid and can span several orders of magnitude. Although the kinetics of dissolution depends on the complexities of both the dissolving solid and the solvent, a clear understanding of which structural descriptors of the solid control its dissolution rate is lacking. By pioneering dissolution experiments and atomistic simulations, we correlate the dissolution rates-ranging over 4 orders of magnitude-of a selection of silicate glasses and crystals to the number of chemical topological constraints acting between the atoms of the dissolving solid. The number of such constraints serves as an indicator of the effective activation energy, which arises from steric effects, and prevents the network from reorganizing locally to accommodate intermediate units forming over the course of the dissolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA