Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37975812

RESUMO

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Assuntos
Ácido Abscísico , Bixaceae , Extratos Vegetais , Bixaceae/genética , Bixaceae/metabolismo , Ácido Abscísico/metabolismo , Proteômica , Melhoramento Vegetal , Carotenoides/metabolismo
2.
Physiol Plant ; 174(6): e13809, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36309819

RESUMO

Drought, heat and high irradiance are abiotic stresses that negatively affect plant development and reduce crop productivity. The confluence of these three factors is common in nature, causing extreme situations for plants that compromise their viability. Drought and heat stresses increase the saturation of the photosystem reaction centers, increasing sensitivity to high irradiance. In addition, these stress conditions affect photosystem II (PSII) integrity, alter redox balance of the electron transport chain and decrease the photosynthetic rate. Here, we studied the effect of the stress combinations on the photosynthetic apparatus of two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni). Results obtained showed that physiological responses, such as modulation of stomatal aperture and transpiration rate, aimed to reduce leaf temperature, are key to diminishing heat impact on photosynthetic apparatus and increasing tolerance to double and triple combinations of drought, high irradiance and high temperatures. By using transcriptomic and proteomic analyses, we have demonstrated that under these abiotic stress combinations, Carrizo plants were able to increase expression of genes and proteins related to the photosystem repairing machinery (which better maintained the integrity of PSII) and other components of the photosynthetic apparatus. Our findings reveal crucial physiological and genetic responses in citrus to increase tolerance to the combination of multiple abiotic stresses that could be the basis for breeding programs that ensure a sustainable citrus production.


Assuntos
Citrus , Citrus/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteômica , Resposta ao Choque Térmico , Estresse Fisiológico , Secas
3.
Plant Cell Rep ; 41(3): 593-602, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34232376

RESUMO

KEY MESSAGE: The activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion. Therefore, rootstock selection is key to improve crop performance and a sustainable production under changing climate conditions. Climate change is altering weather conditions such as mean temperatures and precipitation patterns. Rising temperatures, especially in certain regions, accelerates soil water depletion and increases drought risk, which affects agriculture yield. Previously, our research demonstrated that the citrus rootstock Carrizo citrange (Citrus sinensis × Poncirus trifoliata) is more tolerant than Cleopatra mandarin (C. reshni) to drought and heat stress combination, in part, due to a higher activation of the antioxidant system that alleviated damage produced by oxidative stress. Here, by using reciprocal grafts of both genotypes, we studied the importance of the rootstock on scion performance and antioxidant response under this stress combination. Carrizo rootstock, under stress combination, positively influenced Cleopatra scion by reducing H2O2 accumulation, increasing superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymatic activities and inducing SOD1, APX2 and catalase (CAT) protein accumulations. On the contrary, Cleopatra rootstock induced decreases in APX2 expression, CAT activity and SOD1, APX2 and CAT contents on Carrizo scion. Taken together, our findings indicate that the activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion and highlight the importance of the rootstock selection to improve crop performance and maintain citrus yield under the current scenario of climate change.


Assuntos
Citrus , Antioxidantes/metabolismo , Citrus/metabolismo , Secas , Resposta ao Choque Térmico , Peróxido de Hidrogênio/metabolismo , Superóxido Dismutase-1/metabolismo
4.
J Proteome Res ; 19(10): 4145-4157, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964716

RESUMO

In this study, a label-free quantitative phosphoproteomic analysis was performed to identify and quantify signaling events related to the acquisition of embryogenic competence in sugarcane. Embryogenic and nonembryogenic calli were compared at the multiplication phase, resulting in the identification of 163 phosphoproteins unique to embryogenic calli, 9 unique to nonembryogenic calli, and 51 upregulated and 40 downregulated in embryogenic calli compared to nonembryogenic calli. Data are available via ProteomeXchange with identifier PXD018054. Motif-x analysis revealed the enrichment of [xxxpSPxxx], [RxxpSxxx], and [xxxpSDxxx] motifs, which are predicted phosphorylation sites for several kinases related to stress responses. The embryogenic-related phosphoproteins (those unique and upregulated in embryogenic calli) identified in the present study are related to abscisic acid-induced signaling and abiotic stress response; they include OSK3, ABF1, LEAs, and RD29Bs. On the other hand, the nonembryogenic-related phosphoproteins EDR1 and PP2Ac-2 are negative regulators of abscisic acid signaling, suggesting a relationship between phosphoproteins involved in the abscisic acid and stress responses in the acquisition of embryogenic competence. Moreover, embryogenic-related phosphoproteins associated with epigenetic modifications, such as HDA6, HDA19, and TOPLESS, and with RNA metabolism, including AGO1, DEAH5, SCL30, UB2C, and SR45, were identified to play potential roles in embryogenic competence. These results reveal novel phosphorylation sites for several proteins and identify potential candidate biomarkers for the acquisition of embryogenic competence in sugarcane.


Assuntos
Saccharum , Ácido Abscísico , Grão Comestível , Desenvolvimento Embrionário , Proteínas de Plantas/genética , Saccharum/genética
5.
Proteomics ; 18(5-6): e1700265, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29369500

RESUMO

Somatic embryogenesis is a biotechnological approach mainly used for the clonal propagation of different plants worldwide. In somatic embryogenesis, embryos arise from somatic cells under appropriate culture conditions. This plasticity in plants is a demonstration of true cellular totipotency and is the best approach among the genetic transformation protocols used for plant regeneration. Despite the importance of somatic embryogenesis, knowledge regarding the control of the somatic embryogenesis process is limited. Therefore, the elucidation of both the biochemical and molecular processes is important for understanding the mechanisms by which a single somatic cell becomes a whole plant. Modern proteomic techniques rely on an alternative method for the identification and quantification of proteins with different abundances in embryogenic cell cultures or somatic embryos and enable the identification of specific proteins related to somatic embryogenesis development. This review focuses on somatic embryogenesis studies that use gel-free shotgun proteomic analyses to categorize proteins that could enhance our understanding of particular aspects of the somatic embryogenesis process and identify possible targets for future studies.


Assuntos
Proteínas de Plantas/análise , Técnicas de Embriogênese Somática de Plantas , Plantas/embriologia , Plantas/metabolismo , Proteoma/análise , Sementes/química
6.
J Proteome Res ; 17(8): 2767-2779, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29931982

RESUMO

Somatic embryogenesis is an important biological process in several plant species, including sugar cane. Proteomics approaches have shown that H+ pumps are differentially regulated during somatic embryogenesis; however, the relationship between H+ flux and embryogenic competence is still unclear. This work aimed to elucidate the association between extracellular H+ flux and somatic embryo maturation in sugar cane. We performed a microsomal proteomics analysis and analyzed changes in extracellular H+-flux and H+-pump (P-H+-ATPase, V-H+-ATPase, and H+-PPase) activity in embryogenic and non-embryogenic callus. A total of 657 proteins were identified, 16 of which were H+ pumps. We observed that P-H+-ATPase and H+-PPase were more abundant in embryogenic callus. Compared to non-embryogenic callus, embryogenic callus showed higher H+ influx, especially on maturation day 14, as well as higher H+-pump activity (mainly, P-H+-ATPase and H+-PPase activity). H+-PPase appears to be the major H+ pump in embryogenic callus during somatic embryo formation, functioning in both vacuole acidification and PPi homeostasis. These results provide evidence for an association between higher H+-pump protein abundance and, consequently, higher H+ flux and embryogenic competence acquisition in the callus of sugar cane, allowing for the optimization of the somatic embryo conversion process by modulating the activities of these H+ pumps.


Assuntos
Proteínas de Plantas/análise , Bombas de Próton/metabolismo , Saccharum/crescimento & desenvolvimento , Adenosina Trifosfatases/metabolismo , Regulação da Expressão Gênica de Plantas , Microssomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Prótons , Vacúolos/metabolismo
7.
Physiol Mol Biol Plants ; 24(2): 295-305, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29515323

RESUMO

Efficient protocols for somatic embryogenesis of papaya (Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C. papaya. To study the effects of PEG on somatic embryogenesis of C. papaya, we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C. papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.

8.
Proteome Sci ; 12: 37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076862

RESUMO

BACKGROUND: Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). RESULTS: The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). CONCLUSIONS: The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya.

9.
Protoplasma ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530427

RESUMO

In plant tissue culture, differences in endogenous levels of species-specific plant growth regulators (PGRs) may explain differences in regenerative capacity. In the case of polyamines (PAs), their dynamics and distribution may vary between species, genotypes, tissues, and developmental pathways, such as sexual reproduction and apomixis. In this study, for the first time, we aimed to assess the impact of varying endogenous PAs levels in seeds from distinct reproductive modes in Miconia spp. (Melastomataceae), on their in vitro regenerative capacity. We quantified the free PAs endogenous content in seeds of Miconia australis (obligate apomictic), Miconia hyemalis (facultative apomictic), and Miconia sellowiana (sexual) and evaluated their in vitro regenerative potential in WPM culture medium supplemented with a combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The morphogenic responses were characterized by light microscopy and scanning electron microscopy and discussed regarding the endogenous PAs profiles found. Seeds of M. sellowiana presented approximately eight times more putrescine than M. australis, which was associated with a higher percentage of regenerated calluses (76.67%) than M. australis (5.56%). On the other hand, spermine levels were significantly higher in M. australis. Spermine is indicated as an inhibitor of auxin-carrying gene expression, which may have contributed to its lower regenerative capacity under the tested conditions. These findings provide important insights into in vitro morphogenesis mechanisms in Miconia and highlight the significance of endogenous PA levels in plant regeneration. These discoveries can potentially optimize future regeneration protocols in Miconia, a plant group still underexplored in this area.

10.
Physiol Plant ; 148(1): 121-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22998677

RESUMO

Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro-embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal-bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H(+) -ATPase P- and V-types and H(+) -PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.


Assuntos
Técnicas de Embriogênese Somática de Plantas , Poliaminas/metabolismo , Bombas de Próton/metabolismo , Traqueófitas/embriologia , Traqueófitas/metabolismo , Traqueófitas/citologia
11.
Hortic Res ; 10(7): uhad107, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577403

RESUMO

Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses. Here, by comparing transcriptomic and proteomic profiles to different abiotic stress combinations in two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni), with contrasting tolerance to different abiotic stresses, we revealed key responses to the triple combination of heat stress, high irradiance and drought. The specific transcriptomic response to this stress combination in Carrizo was directed to regulate RNA metabolic pathways and translation processes, potentially conferring an advantage with respect to Cleopatra. In addition, we found endoplasmic reticulum stress response as common to all individual and combined stress conditions in both genotypes and identified the accumulation of specific groups of heat shock proteins (HSPs), such as small HSPs and HSP70s, and regulators of the unfolded protein response, BiP2 and PDIL2-2, as possible factors involved in citrus tolerance to triple stress combination. Taken together, our findings provide new insights into the acclimation process of citrus plants to multiple stress combination, necessary for increasing crop tolerance to the changing climatic conditions.

12.
Nat Prod Res ; : 1-9, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712397

RESUMO

In vitro tissue culture can be an alternative method for endangered species propagation, biodiversity conservation and secondary metabolite studies. Paratecoma peroba (Record) Kuhlm. (Bignoniaceae) is an endemic and endangered Brazilian species. This work aimed to establish in vitro morphogenesis and callus induction and to perform a phytochemical analysis of P. peroba callus extract. Higher seed germination (43%) was obtained in Wood Plant Medium culture without activated charcoal (AC). Combination of 5 µM benzyladenine + 10 µM gibberellic acid, without AC, resulted in a higher number of shoots (2 shoots/explant). A callus culture was stabilised from zygotic embryos using 2,4-dichlorophenoxyacetic acid. A callus methanolic extract was used for phytochemical analysis. The isolated substance was identified as tiliroside (kaempferol 3-O-ß-D-(6''-O-E-p-coumaroyl)-glucopyranoside) by NMR and quantified in callus and leaf extracts by HPLC. This study adds to the chemical knowledge of this species and it is the first report of a flavonol in Paratecoma.

13.
Protoplasma ; 260(2): 467-482, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35788779

RESUMO

Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.


Assuntos
Amaranthaceae , Proteômica , Azacitidina/farmacologia , Cloreto de Sódio/farmacologia , Tolerância ao Sal/genética , Epigênese Genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
14.
Plants (Basel) ; 12(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005788

RESUMO

Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 µM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.

15.
Antonie Van Leeuwenhoek ; 101(3): 657-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160750

RESUMO

A 6,000 Da peptide, named CaTI, was isolated from Capsicum annuum L. seeds and showed potent inhibitory activity against trypsin and chymotrypsin. The aim of this study was to determine the effect of CaTI on Saccharomyces cerevisiae, Candida albicans, Candida tropicalis and Kluyveromyces marxiannus cells. We observed that CaTI inhibited the growth of S. cerevisiae, K. marxiannus as well as C. albicans and induced cellular agglomeration and the release of cytoplasmic content. No effect on growth was observed in C. tropicalis but morphological changes were noted. In the spot assay, different degrees of sensitivity were shown among the strains and concentrations tested. Scanning electron microscopy showed that S. cerevisiae, K. marxiannus and C. albicans, in the presence of CaTI, exhibited morphological alterations, such as the formation of pseudohyphae, cellular aggregates and elongated forms. We also show that CaTI induces the generation of nitric oxide and interferes in a dose-dependent manner with glucose-stimulated acidification of the medium mediated by H(+)-ATPase of S. cerevisiae cells.


Assuntos
Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Capsicum/enzimologia , Kluyveromyces/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Inibidores da Tripsina/farmacologia , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/ultraestrutura , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/antagonistas & inibidores , Glucose/farmacologia , Kluyveromyces/crescimento & desenvolvimento , Kluyveromyces/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Óxido Nítrico/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , ATPases Translocadoras de Prótons/antagonistas & inibidores , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação
16.
Methods Mol Biol ; 2527: 83-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951185

RESUMO

Somatic embryogenesis is the process by which embryos are formed from a single or small group of somatic cells in response to specific stimuli. Somatic embryogenesis has been applied to achieve mass clonal propagation on an industrial scale and to increase the agronomic performance of species of economic interest, including sugarcane. The use of somatic embryogenesis in sugarcane stands out as a biotechnological tool with a high potential for application in the clonal propagation of disease-free elite varieties, as an essential part of genetic transformation protocols, and in the production of synthetic seeds. A better understanding of each phase of somatic embryogenesis can help to optimize the process to enhance yields and produce high-quality emblings. In this chapter, we describe a detailed protocol for somatic embryogenesis in sugarcane (Saccharum sp.) to be used in research projects for small-scale production. This protocol comprises all steps from explant preparation to the establishment of sugarcane emblings.


Assuntos
Saccharum , Grão Comestível , Desenvolvimento Embrionário/genética , Saccharum/genética , Sementes/genética
17.
J Proteomics ; 252: 104434, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34818586

RESUMO

Understanding the mechanisms that endow a somatic cell with the ability to differentiate into a somatic embryo, which could result in numerous biotechnological applications, is still a challenge. The objective of this work was to identify some of the molecular and physiological mechanisms responsible for the acquisition of embryogenic competence during somatic embryogenesis in Carica papaya L. We performed a broad characterization of embryogenic (EC) and nonembryogenic calli (NEC) of using global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide (H2O2) contents. EC and NEC presented remarkable differences in anatomical and histochemical characteristics, with EC showing a higher reactivity for the presence of proteins and neutral polysaccharides. Our results demonstrate that mitochondrial metabolism affects the embryogenic competence of C. papaya callus. The EC presented higher participation of alternative oxidase (AOX) enzymes, higher total cell respiration and presented a stronger accumulation of mitochondrial stress response proteins. Differential accumulation of auxin-responsive Gretchen Hagen 3 (GH3) family proteins in EC was related to a decrease in the content of free 2,4-dichlorophenoxyacetic acid (2,4-D). EC also showed higher endogenous H2O2 contents. H2O2 is a promising molecule for further investigation in differentiation protocols for C. papaya somatic embryos. SIGNIFICANCE: To further advance the understanding of somatic embryogenesis, we performed a broad characterization of embryogenic and nonembryogenic callus, through global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide contents. Based on these results, we propose a working model for the competence of papaya callus. This model suggests that GH3 proteins play an important role in the regulation of auxins. In addition, embryogenic callus showed a greater abundance of stress response proteins and folding proteins. Embryogenic callus respiration occurs predominantly via AOX, and the inhibition of its activity is capable of inhibiting callus differentiation. Although the embryogenic callus presented greater total respiration and a greater abundance of oxidative phosphorylation proteins, they had less COX participation and less coupling efficiency, indicating less ATP production.


Assuntos
Carica , Proteômica , Desenvolvimento Embrionário , Peróxido de Hidrogênio , Proteômica/métodos
18.
J Plant Physiol ; 268: 153587, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34906795

RESUMO

Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.


Assuntos
Fosforilação , Proteômica , Saccharum , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Saccharum/genética , Saccharum/metabolismo , Sementes
19.
Ann Bot ; 108(2): 337-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685432

RESUMO

BACKGROUND AND AIMS: Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. METHODS: Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. KEY RESULTS: During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. CONCLUSIONS: The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators.


Assuntos
Ácido Abscísico/metabolismo , Germinação/fisiologia , Ácidos Indolacéticos/metabolismo , Ocotea/metabolismo , Sementes/metabolismo , Traqueófitas/metabolismo , Brasil , Espécies em Perigo de Extinção , Ocotea/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Traqueófitas/crescimento & desenvolvimento
20.
Biosci Biotechnol Biochem ; 75(1): 70-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21228492

RESUMO

Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO3⁻, high dose (5.0 mM N-NO3⁻) and low dose (5.0 mM N-NO3⁻). Treatments with HA and NO were positively increased, regardless of the N-NO3⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO3⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO3⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.


Assuntos
Catalase/metabolismo , Substâncias Húmicas , Espécies Reativas de Oxigênio/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA