Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(8): 1253-1273, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32129442

RESUMO

Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dinamina II/deficiência , Doenças Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Dinamina II/genética , Heterozigoto , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Mutação/genética , Miopatias Congênitas Estruturais/patologia , Fenótipo
2.
J Immunol ; 192(11): 5257-64, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24752445

RESUMO

Signals of tissue necrosis, damage-associated molecular patterns (DAMPs), cause inflammation. Leukocytes migrating into injured tissues tonically release DAMPs, including the high mobility group box 1 protein (HMGB1). In the absence of suitable models, the relative role of DAMPs released because of necrosis or leukocyte activation has not, so far, been dissected. We have generated a mouse model lacking Hmgb1 in the hematopoietic system and studied the response to acute sterile injury of the skeletal muscle. Regenerating fibers are significantly less numerous at earlier time points and smaller at the end of the process. Leukocyte Hmgb1 licenses the skeletal muscle to react to hypoxia, to express angiopoietin-2, and to initiate angiogenesis in response to injury. Vascularization of the regenerating tissue is selectively jeopardized in the absence of leukocyte Hmgb1, revealing that it controls the nutrient and oxygen supply to the regenerating tissue. Altogether, our results reveal a novel nonredundant role for leukocyte Hmgb1 in the repair of injured skeletal muscle.


Assuntos
Angiopoietina-2/imunologia , Proteína HMGB1/imunologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/imunologia , Neovascularização Fisiológica/imunologia , Regeneração/imunologia , Angiopoietina-2/genética , Animais , Proteína HMGB1/genética , Leucócitos/imunologia , Camundongos , Camundongos Knockout , Músculo Esquelético/lesões , Neovascularização Fisiológica/genética , Regeneração/genética
3.
Methods Mol Biol ; 2454: 273-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33755908

RESUMO

Tissue engineering solutions have been widely explored for enhanced healing of skin wounds. Diabetic foot ulcers (DFU) are particularly challenging wounds to heal for a variety of reasons, including aberrant ECM, dysregulation of vascularization, and persistent inflammation. Tissue engineering approaches, such as porous collagen-based scaffolds, have shown promise in replacing the current treatments of surgical debridement and topical treatments. Collagen-glycosaminoglycan scaffolds, which are FDA approved for diabetic foot ulcers, can benefit from further functionalization by incorporation of additional signaling factors or extracellular matrix molecules. One option for this is to incorporate matrix from a rejuvenated cell source, as wounds in younger patients heal more quickly. Induced pluripotent stem cells (iPS) are generated from somatic cells and share many functional similarities with embryonic stem cells (ES), while avoiding the ethical concerns. Fibroblasts differentiated from iPS cells have been shown to enrich their ECM with glycosaminoglycan (GAGs), collagen Type III and fibronectin, to have an increased ECM production, and to be pro-angiogenic. Here we describe a technique to grow matrix from post-iPS fibroblasts, and to develop a scaffold from this matrix, in combination with collagen, with the goal of enhancing wound healing. By activating scaffolds with extracellular matrix (ECM) from fibroblasts derived from an iPS source (post-iPSF), the scaffolds are enriched with beneficial elements like GAGs, collagen type III, fibronectin, and VEGF. We believe these scaffolds can enhance skin regeneration and that the techniques can be modified for other tissue engineering applications.


Assuntos
Pé Diabético , Células-Tronco Pluripotentes Induzidas , Colágeno/metabolismo , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
Polymers (Basel) ; 14(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215595

RESUMO

The most common three-dimensional (3D) printing method is material extrusion, where a pre-made filament is deposited layer-by-layer. In recent years, low-cost polycaprolactone (PCL) material has increasingly been used in 3D printing, exhibiting a sufficiently high quality for consideration in cranio-maxillofacial reconstructions. To increase osteoconductivity, prefabricated filaments for bone repair based on PCL can be supplemented with hydroxyapatite (HA). However, few reports on PCL/HA composite filaments for material extrusion applications have been documented. In this study, solvent-free fabrication for PCL/HA composite filaments (HA 0%, 5%, 10%, 15%, 20%, and 25% weight/weight PCL) was addressed, and parameters for scaffold fabrication in a desktop 3D printer were confirmed. Filaments and scaffold fabrication temperatures rose with increased HA content. The pore size and porosity of the six groups' scaffolds were similar to each other, and all had highly interconnected structures. Six groups' scaffolds were evaluated by measuring the compressive strength, elastic modulus, water contact angle, and morphology. A higher amount of HA increased surface roughness and hydrophilicity compared to PCL scaffolds. The increase in HA content improved the compressive strength and elastic modulus. The obtained data provide the basis for the biological evaluation and future clinical applications of PCL/HA material.

5.
Adv Nanobiomed Res ; 2(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36532145

RESUMO

Diabetic foot ulcers (DFU) are chronic wounds sustained by pathological fibroblasts and aberrant extracellular matrix (ECM). Porous collagen-based scaffolds (CS) have shown clinical promise for treating DFUs but may benefit from functional enhancements. Our previous work showed fibroblasts differentiated from induced pluripotent stem cells are an effective source of new ECM mimicking fetal matrix, which notably promotes scar-free healing. Likewise, functionalizing CS with this rejuvenated ECM showed potential for DFU healing. Here, we demonstrate for the first time an approach to DFU healing using biopsied cells from DFU patients, reprogramming those cells, and functionalizing CS with patient-specific ECM as a personalized acellular tissue engineered scaffold. We took a two-pronged approach: 1) direct ECM blending into scaffold fabrication; and 2) seeding scaffolds with reprogrammed fibroblasts for ECM deposition followed by decellularization. The decellularization approach reduced cell number requirements and maintained naturally deposited ECM proteins. Both approaches showed enhanced ECM deposition from DFU fibroblasts. Decellularized scaffolds additionally enhanced glycosaminoglycan deposition and subsequent vascularization. Finally, reprogrammed ECM scaffolds from patient-matched DFU fibroblasts outperformed those from healthy fibroblasts in several metrics, suggesting ECM is in fact able to redirect resident pathological fibroblasts in DFUs towards healing, and a patient-specific ECM signature may be beneficial.

6.
J Biomed Mater Res A ; 109(10): 1803-1811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755305

RESUMO

Extracellular matrix is a key component of all tissues, including skin and it plays a crucial role in the complex events of wound healing. These events are impaired in chronic wounds, with chronic inflammation and infection often present in these non-healing wounds. Many tissue engineering approaches for wound healing provide a scaffold to mimic the native matrix. Fibroblasts derived from iPS cells (iPSF) represent a novel source of matrix rich in pro-regenerative components, which can be used for scaffold fabrication to improve wound healing. However, in vitro production of matrix by cells for scaffold fabrication requires long cell culturing times which increases cost. The aim of this work is to optimize the iPSF matrix production by boosting matrix deposition, without affecting its composition. A good candidate technique to achieve this goal is macromolecular crowding, which is known to promote conversion of procollagen into mature collagen and its accumulation. We tested two molecular crowders, Ficoll and Carrageenan-in combination with ascorbic acid-over a prolonged period of time. Ficoll in combination with ascorbic acid notably increased collagen deposition and matrix dry weight compared to ascorbic acid alone, and did not affect matrix composition as measured by RT-PCR. Interestingly, Carrageenan did not affect collagen quantity, but it significantly increased glycosaminoglycan deposition. Finally, we successfully fabricated scaffolds from harvested matrix and confirmed their ability for cell growth and viability. This work lays the foundation for development of a time and cost effective protocol for novel iPSF ECM production for tissue engineering scaffolds.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Cicatrização , Animais , Bovinos , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Substâncias Macromoleculares/metabolismo
7.
Biomater Sci ; 9(5): 1888, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33226390

RESUMO

Correction for 'Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles' by Tauseef Ahmad et al., Biomater. Sci., 2020, DOI: 10.1039/d0bm01277g.

8.
Biomater Sci ; 9(12): 4278-4288, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33165491

RESUMO

Natural bioactive cue profiles are generally transient with cues switching on/off to coordinate successful outcomes. Dysregulation of these sequences typically leads to disease. Successful wound healing, for example, should progress sequentially through hemostasis, inflammation, granulation tissue formation, and maturation. Chronic wounds, such as diabetic foot ulcers, suffer from uncoordinated signaling, and arrest and cycle between the inflammation and granulation stages. Traditionally, therapeutic delivery in tissue engineering has focused on sustaining delivery of key signaling factors; however, temporal and sequential delivery have increasingly come into focus. To fully take advantage of these signaling systems, a scaffold or matrix material that can house the delivery system is desirable. In this work, we functionalized a collagen-based scaffold - which has proven regenerative potential in wounds - with on-demand delivery of nanoparticles. Building on our previous work with ultrasound-responsive alginate that shows near-zero baseline release and a rapid release in response to an ultrasound trigger, we developed two novel scaffolds. In the first version, homogeneously-distributed microparticles of alginate were incorporated within the collagen-glycosaminoglycan (GAG) scaffold; ultrasound-triggered release of platelet derived growth factor (PDGF) loaded gold nanoparticles was demonstrated; and their maintained bioactivity confirmed. In the second version, pockets of alginate that can be individually loaded and triggered with ultrasound, were incorporated. The ability to sequentially release multiple therapeutics within these scaffolds using ultrasound was successfully confirmed. These platforms offer a precise and versatile way to deliver therapeutic nanoparticles within a proven regenerative template, and can be used to deliver and probe timed therapeutic delivery in wound healing and other tissue engineering applications.


Assuntos
Nanopartículas Metálicas , Alicerces Teciduais , Alginatos , Ouro , Cicatrização
9.
J Mech Behav Biomed Mater ; 114: 104174, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191173

RESUMO

Tissue engineering products, like collagen-glycosaminoglycan scaffolds, have been successfully applied to chondrogenic defects. Inducible Pluripotent Stem cell (iPS) technology allows reprograming of somatic cells into an embryonic-like state, allowing for redifferentiation. We postulated that a fibroblast cell line (BJ cells - 'pre-iPSF') cycled through iPS reprogramming and redifferentiated into fibroblasts (post-iPSF) could lubricate collagen-glycosaminoglycan scaffolds; fibroblasts are known to produce lubricating molecules (e.g., lubricin) in the synovium. Herein, we quantified the coefficient of friction (CoF) of collagen-glycosaminoglycan scaffolds seeded with post-iPSF; tested whether cell-free scaffolds made of post-iPSF derived extracellular matrix had reduced friction vs. pre-iPSF; and assessed lubricin quantity as a possible protein responsible for lubrication. Post-iPSF seeded CG had 6- to 10-fold lower CoF versus pre-iPSF. Scaffolds consisting of a collagen and pre-/post-iPSF extracellular matrix blend outperformed these cell-seeded scaffolds (~5-fold lower CoF), yielding excellent CoF values close to synovial fluid. Staining revealed an increased presence of lubricin within post-iPSF scaffolds (confirmed by western blotting) and on the surface of iPSF-seeded collagen-glycosaminoglycan scaffolds. Interestingly, when primary cells from patient biopsy-derived fibroblasts were used, iPS reprogramming did not further reduce the already low CoF of these cells and no lubricin expression was found. We conclude that iPS reprogramming activates lubricating properties in iPS-derived cells in a source cell-specific manner. Additionally, lubricin appears to play a lubricating role, yet other proteins also contribute to lubrication. This work constitutes an important step for understanding post-iPSF lubrication of scaffolds and its potential for cartilage tissue engineering.


Assuntos
Condrogênese , Colágeno , Células-Tronco Pluripotentes , Alicerces Teciduais , Cartilagem , Fibroblastos , Humanos
10.
Cells ; 9(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998477

RESUMO

The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aß oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and ß-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.


Assuntos
Encéfalo/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/genética , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/genética , Biomarcadores/metabolismo , Encéfalo/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Fosforilação
11.
Adv Healthc Mater ; 9(16): e2000307, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597577

RESUMO

Diabetic foot ulcers (DFUs) are chronic wounds, with 20% of cases resulting in amputation, despite intervention. A recently approved tissue engineering product-a cell-free collagen-glycosaminoglycan (GAG) scaffold-demonstrates 50% success, motivating its functionalization with extracellular matrix (ECM). Induced pluripotent stem cell (iPSC) technology reprograms somatic cells into an embryonic-like state. Recent findings describe how iPSCs-derived fibroblasts ("post-iPSF") are proangiogenic, produce more ECM than their somatic precursors ("pre-iPSF"), and their ECM has characteristics of foetal ECM (a wound regeneration advantage, as fetuses heal scar-free). ECM production is 45% higher from post-iPSF and has favorable components (e.g., Collagen I and III, and fibronectin). Herein, a freeze-dried scaffold using ECM grown by post-iPSF cells (Post-iPSF Coll) is developed and tested vs precursors ECM-activated scaffolds (Pre-iPSF Coll). When seeded with healthy or DFU fibroblasts, both ECM-derived scaffolds have more diverse ECM and more robust immune responses to cues. Post-iPSF-Coll had higher GAG, higher cell content, higher Vascular Endothelial Growth Factor (VEGF) in DFUs, and higher Interleukin-1-receptor antagonist (IL-1ra) vs. pre-iPSF Coll. This work constitutes the first step in exploiting ECM from iPSF for tissue engineering scaffolds.


Assuntos
Diabetes Mellitus , Células-Tronco Pluripotentes Induzidas , Matriz Extracelular , Fibroblastos , Humanos , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Cicatrização
12.
Artigo em Inglês | MEDLINE | ID: mdl-31921799

RESUMO

Porous collagen-glycosaminoglycan (collagen-GAG) scaffolds have shown promising clinical results for wound healing; however, these scaffolds do not replace the dermal and epidermal layer simultaneously and rely on local endogenous signaling to direct healing. Functionalizing collagen-GAG scaffolds with signaling factors, and/or additional matrix molecules, could help overcome these challenges. An ideal candidate for this is platelet-rich plasma (PRP) as it is a natural reservoir of growth factors, can be activated to form a fibrin gel, and is available intraoperatively. We tested the factors released from PRP (PRPr) and found that at specific concentrations, PRPr enhanced cell proliferation and migration and induced angiogenesis to a greater extent than fetal bovine serum (FBS) controls. This motivated us to develop a strategy to successfully incorporate PRP homogeneously within the pores of the collagen-GAG scaffolds. The composite scaffold released key growth factors for wound healing (FGF, TGFß) and vascularization (VEGF, PDGF) for up to 14 days. In addition, the composite scaffold had enhanced mechanical properties (when compared to PRP gel alone), while providing a continuous upper surface of extracellular matrix (ECM) for keratinocyte seeding. The levels of the factors released from the composite scaffold were sufficient to sustain proliferation of key cells involved in wound healing, including human endothelial cells, mesenchymal stromal cells, fibroblasts, and keratinocytes; even in the absence of FBS supplementation. In functional in vitro and in vivo vascularization assays, our composite scaffold demonstrated increased angiogenic and vascularization potential, which is known to lead to enhanced wound healing. Upon pro-inflammatory induction, macrophages released lower levels of the pro-inflammatory marker MIP-1α when treated with PRPr; and released higher levels of the anti-inflammatory marker IL1-ra upon both pro- and anti-inflammatory induction when treated with the composite scaffold. Finally, our composite scaffold supported a co-culture system of human fibroblasts and keratinocytes that resulted in an epidermal-like layer, with keratinocytes constrained to the surface of the scaffold; by contrast, keratinocytes were observed infiltrating the PRP-free scaffold. This novel composite scaffold has the potential for rapid translation to the clinic by isolating PRP from a patient intraoperatively and combining it with regulatory approved scaffolds to enhance wound repair.

13.
PLoS One ; 8(3): e59308, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555016

RESUMO

Skeletal muscle remodeling in response to various noxae physiologically includes structural changes and inflammatory events. The possibility to study those phenomena in-vivo has been hampered by the lack of validated imaging tools. In our study, we have relied on multiparametric magnetic resonance imaging for quantitative monitoring of muscle changes in mice experiencing age-related sarcopenia or active regeneration after sterile acute injury of tibialis anterior muscle induced by cardiotoxin (CTX) injection. The extent of myofibrils' necrosis, leukocyte infiltration, and regeneration have been evaluated and compared with parameters from magnetic resonance imaging: T2-mapping (T2 relaxation time; T2-rt), diffusion-tensor imaging (fractional anisotropy, F.A.) and diffusion weighted imaging (apparent diffusion coefficient, ADC). Inflammatory leukocytes within the perimysium and heterogeneous size of fibers characterized aged muscles. They displayed significantly increased T2-rt (P<0.05) and F.A. (P<0.05) compared with young muscles. After acute damage T2-rt increased in otherwise healthy young muscles with a peak at day 3, followed by a progressive decrease to basal values. F.A. dropped 24 hours after injury and afterward increased above the basal level in the regenerated muscle (from day 7 to day 15) returning to the basal value at the end of the follow up period. The ADC displayed opposite kinetics. T2-rt positively correlated with the number of infiltrating leucocytes retrieved by immunomagnetic bead sorting from the tissue (r = 0.92) and with the damage/infiltration score (r = 0.88) while F.A. correlated with the extent of tissue regeneration evaluated at various time points after injury (r = 0.88). Our results indicate that multiparametric MRI is a sensitive and informative tool for monitoring inflammatory and structural muscle changes in living experimental animals; particularly, it allows identifying the increase of T2-rt and F.A. as common events reflecting inflammatory infiltration and muscle regeneration in the transient response of the tissue to acute injury and in the persistent adaptation to aging.


Assuntos
Envelhecimento , Imagem de Tensor de Difusão/métodos , Músculo Esquelético/patologia , Regeneração/fisiologia , Sarcopenia/patologia , Animais , Cardiotoxinas , Movimento Celular , Feminino , Homeostase/fisiologia , Leucócitos/citologia , Camundongos , Músculo Esquelético/lesões , Miofibrilas/patologia , Sarcopenia/induzido quimicamente , Sarcopenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA