Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(23): 12876-12882, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754419

RESUMO

Porous ionic liquids are non-volatile, versatile materials that associate porosity and fluidity. New porous ionic liquids, based on the ZIF-8 metal-organic framework and on phosphonium acetate or levulinate salts, were prepared and show an increased capacity to absorb carbon dioxide at low pressures. Porous suspensions based on phosphonium levulinate ionic liquid absorb reversibly 103 % more carbon dioxide per mass than pure ZIF-8 at 1 bar and 303 K. We show how the rational combination of MOFs with ionic liquids can greatly enhance low pressure CO2 absorption, paving the way towards a new generation of high-performance, readily available liquid materials for effective low pressure carbon capture.

2.
Magn Reson Chem ; 58(3): 271-279, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826301

RESUMO

Electrophoretic nuclear magnetic resonance (eNMR) is a powerful tool in studies of nonaqueous electrolytes, such as ionic liquids. It delivers electrophoretic mobilities of the ionic constituents and thus sheds light on ion correlations. In applications of liquid electrolytes, uncharged additives are often employed, detectable via 1 H NMR. Characterizing their mobility and coordination to charged entities is desirable; however, it is often hampered by small intensities and 1 H signals overlapping with major constituents of the electrolyte. In this work, we evaluate methods of phase analysis of overlapping resonances to yield electrophoretic mobilities even for minor constituents. We use phase-sensitive spectral deconvolution via a set of Lorentz distributions for the investigation of the migration behavior of additives in two different ionic liquid-based lithium salt electrolytes. For vinylene carbonate as an additive, no field-induced drift is observed; thus, its coordination to the Li+ ion does not induce a correlated drift with Li+ . On the other hand, in a solvate ionic liquid with tetraglyme (G4) as an additive, a correlated migration of tetraglyme with lithium as a complex solvate cation is directly proven by eNMR. The phase evaluation procedure of superimposed resonances thus broadens the applicability of eNMR to application-relevant complex electrolyte mixtures containing neutral additives with superimposed resonances.

3.
Langmuir ; 34(24): 7086-7095, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29804454

RESUMO

Cobalt nanoparticles (CoNPs) exhibit quite unique magnetic, catalytic, and optical properties. In this work, imidazolium-based ionic liquids (ILs) are successfully used to elaborate magnetically responsive suspensions of quite monodisperse CoNPs with diameters below 5 nm. The as-synthesized CoNPs adopt the noncompact and metastable structure of ϵ-Co that progressively evolves at room temperature toward the stable hexagonal close-packed allotrope of Co. Accordingly, magnetization curves are consistent with zero-valent Co. As expected in this size range, the CoNPs are superparamagnetic at room temperature. Their blocking temperature is found to depend on the size of the IL cation. The CoNPs produced in an IL with a large cation exhibit a very high anisotropy, attributed to an enhanced dipolar coupling of the NPs, even though a larger interparticle distance is observed in this IL. Finally, the presence of surface hydrides on the CoNPs is assessed and paves the way toward the synthesis for Co-based bimetallic NPs.

4.
Int J Mol Sci ; 17(6)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271608

RESUMO

The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.


Assuntos
Líquidos Iônicos/química , Nanopartículas Metálicas/química , Silício/química , Nanopartículas Metálicas/ultraestrutura , Metais/química , Tamanho da Partícula , Porosidade , Análise Espectral , Propriedades de Superfície
5.
Phys Chem Chem Phys ; 13(30): 13527-36, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21603700

RESUMO

Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

6.
Chem Commun (Camb) ; 57(64): 7922-7925, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286748

RESUMO

Porous ionic liquids combining alkylphosphonium halides with ZIF-8 absorb large amounts of carbon dioxide that can be catalytically coupled with epoxides to form cyclic carbonates. High activity and selectivity under mild reaction conditions points towards a new promising, high-performing, sustainable family of sorbents for simultaneous carbon capture and transformation.

7.
Phys Chem Chem Phys ; 12(16): 4217-23, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20379515

RESUMO

In situ labelling and spectroscopic experiments are used to explain the key points in the stabilisation of ruthenium nanoparticles (RuNPs) generated in imidazolium-based ionic liquids (ILs) by decomposition of (eta(4)-1,5-cyclooctadiene)(eta(6)-1,3,5-cyclooctatriene)ruthenium(0), Ru(COD)(COT), under dihydrogen. These are found to be: (1) the presence of hydrides at the RuNP surface and, (2) the confinement of RuNPs in the non-polar domains of the structured IL, induced by the rigid 3-D organisation. These results lead to a novel stabilisation model for NPs in ionic liquids.

9.
J Phys Chem B ; 113(1): 170-7, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19195088

RESUMO

The solute-solvent interactions and the site-site distances between toluene and ionic liquids (ILs) 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [BMMIm][NTf2] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIm][NTf2] at various molar ratios were determined by NMR experiments (1D NMR, rotating-frame Overhauser effect spectroscopy (ROESY)) and by molecular simulation using an atomistic force field. The difference in behavior of toluene in these ILs has been related to the presence of H-bonding between the C2-H and the anion in [BMIm][NTf2] generating a stronger association (>20 kJ.mol-1) than in the case of [BMMIm][NTf2]. Consequently, toluene cannot cleave this H-bond in [BMIm][NTf2] which remains in large aggregates of ionic pairs. However, toluene penetrates the less strongly bonded network of [BMMIm][NTf2] and interacts with [BMMIm] cations.

10.
Front Chem ; 7: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058129

RESUMO

The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. Because ionic liquids can be easily obtained with chosen molecular structures and tuneable physicochemical properties, they can be use as media to optimize the exfoliation of graphite. The understanding of the interactions involved between graphite and various chemical functions in the solvent ions will be helpful to find liquids capable of dissociating and stabilizing important quantities of large graphene layers. After a step of sonication, as a mechanical precursor, samples of suspended exfoliated graphene in different ionic liquids have been characterized experimentally in terms of flake size, number of layers, total concentration and purity of the exfoliated material. Nine different ionic liquids based on imidazolium, pyrrolidinium and ammonium cations and on bis(trifluoromethylsulfonyl)imide, triflate, dicyanamide, tricyanomethanide, and methyl sulfate anions have been tested. UV-vis, Raman and X-ray photoelectron in addition to high resolution transmission electron and atomic force microscopy have been selected to characterize suspended exfoliated graphene in ionic liquids. The number of layers in the flakes exfoliated, the size and concentration depend of the structure of the ionic liquid selected. In order to obtain large flake sizes, ionic liquids with bis(trifluoromethylsulfonyl)imide anions and a cation with an alkyl chain of medium length should be selected. Smaller cation and anion favors the exfoliation of graphene. The exfoliation caused the formation of C-H bonds and the oxidation of the graphitic surface.

11.
J Phys Chem B ; 122(36): 8560-8569, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30118227

RESUMO

To increase the safety and stability of lithium-ion batteries, the development of electrolytes based on ionic liquids (ILs) has gained a lot of attention in recent years. However, with graphite electrodes, neat ILs afford weak cycling performance in the absence of organic additives (e.g., vinylene carbonate, VC). The potential formation of a [Li+]-OVC interaction/coordination could have a major influence on the observed electrochemical behavior of Li-ion batteries. On a specific electrolyte, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C1C6Im][NTf2] in association with Li[NTf2] (1 mol L-1) and VC, we performed NOESY, {1H-7Li} HOESY correlations, and pulsed field gradient spin-echo NMR measurements, combined with molecular dynamics simulations to determine whether such an interaction/coordination between VC and Li+ ions is noticeable. {7Li-1H} HOESY experiment shows the vicinity of VC with [Li+] cation, and strong correlations and association between [Li+] and VC are observed in intense first peaks in radial distribution functions and quantified by the coordination numbers in the first solvation shell between [Li+] and the carbonyl oxygen atom of VC.

12.
Chem Commun (Camb) ; (14): 1462-4, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17389993

RESUMO

Rapid hydroformylation of 1-octene (rates up to 800 h(-1)) with the catalyst remaining stable for at least 40 h and with very low rhodium leaching levels (0.5 ppm) is demonstrated when using a system involving flowing the substrate, reacting gases and products dissolved in supercritical CO(2) (scCO(2)) over a fixed bed supported ionic liquid phase catalyst.

13.
Chem Commun (Camb) ; (16): 2034-5, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12934898

RESUMO

The reaction of Cp*ZrMe3, 1, with the heterogeneous activator [[triple bond]SiO-B(C6F5)3]- [HNEt2Ph]+, 2, has been investigated to generate, by an irreversible process of methane elimination, the well-defined cationic silica-supported metallocenium species [[triple bond]SiO-B(C6F5)3]- [Cp*ZrMe2(NEt2Ph)]+, 3, as an active olefin polymerisation catalyst.

14.
Inorg Chem ; 35(4): 869-875, 1996 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11666259

RESUMO

The reaction of Rh(eta(3)-C(3)H(5))(3) with the surface hydroxyl groups of partially dehydroxylated silica leads to the formation of the surface organometallic complex (&tbd1;SiO)(&tbd1;SiOX)Rh(eta(3)-C(3)H(5))(2), 1 (where X is H or Si&tbd1;), with evolution of propene. The reaction of 1 with PMe(3) was examined, and two major pathways were discovered. Reductive elimination of two allyl ligands as 1,5-hexadiene and coordination of PMe(3) give the surface product (&tbd1;SiO)Rh(PMe(3))(3), 2, which was characterized by elemental analysis, IR and (31)P MAS NMR spectroscopy. We also prepared 2 independently from CH(3)Rh(PMe(3))(3) and partially dehydroxylated silica. The second major reaction pathway is the elimination of propene to give (&tbd1;SiO)(2)Rh(eta(1)-C(3)H(5))(PMe(3))(3), 3. The presence of the sigma-bound allyl ligand was inferred from its characteristic IR spectrum. The reactivity of 3 toward CO was examined: insertion of CO into the Rh-C bond followed by reductive elimination of the silyl ester &tbd1;SiOC(O)C(3)H(5) produces (&tbd1;SiO)Rh(CO)(PMe(3))(2), 4. In static vacuum, 3 decomposes to give allyl alcohol, which is slowly decarbonylated by 2.

15.
Nanoscale ; 6(6): 3367-75, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24526274

RESUMO

A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2(-)) as the anion were synthesized and characterized. The single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Such array formation could be interesting for potential applications such as carbon nanotube growth.

16.
Bioresour Technol ; 148: 255-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055967

RESUMO

Transformation of lignocellulosic biomass to biofuels involves multiple processes, in which thermal decomposition, hydrotreatment are the most central steps. Current work focuses on the impact of several solid acids and Keggin-type heteropolyacids on the decomposition temperature (Td) of pine wood and the characterization of the resulted products. It has been observed that a mechanical mixture of solid acids with pine wood has no influence on Td, while the use of heteropolyacids lower the Td by 100°C. Moreover, the treatment of biomass with a catalytic amount of H3PW12O40 leads to formation of three fractions: solid, liquid and gas, which have been investigated by elemental analysis, TGA, FTIR, GC-MS and NMR. The use of heteropolyacid leads, at 300°C, to a selective transformation of more than 50 wt.% of the holocellulose part of the lignocellulosic biomass. Moreover, 60 wt.% of the catalyst H3PW12O40 are recovered.


Assuntos
Ácidos/farmacologia , Biomassa , Temperatura Alta , Lignina/química , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Catálise/efeitos dos fármacos , Furaldeído/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Pinus/química , Pinus/efeitos dos fármacos , Termogravimetria , Madeira/química , Madeira/efeitos dos fármacos
17.
J Phys Chem B ; 117(24): 7416-25, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23713882

RESUMO

The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.


Assuntos
Etano/química , Etilenos/química , Imidazóis/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Viscosidade
18.
Dalton Trans ; 41(45): 13919-26, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23023650

RESUMO

Suspensions of small sized (1-2.5 nm) ruthenium nanoparticles (RuNPs) have been obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and in the presence of different compounds acting as ligands: C(8)H(17)NH(2), PPhH(2), PPh(2)H and H(2)O. Previous and new liquid NMR experiments showed that the ligands are coordinated or in the proximity to the surface of the RuNPs. Herein is reported how the ligand affects the catalytic performance (activity and selectivity) compared to a ligand-free system of RuNPs, when RuNPs in [C(1)C(4)Im][NTf(2)] are used as catalysts for the hydrogenation of various unsaturated compounds (1,3-cyclohexadiene, limonene and styrene). It has been observed that σ-donor ligands increase the activity of the nanoparticles, contrarily to π-acceptor ones.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Rutênio/química , Sulfonamidas/química , Catálise , Hidrogenação , Ligantes
19.
Dalton Trans ; 40(17): 4660-8, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21416101

RESUMO

Very stable suspensions of small sized (c.a. 1.2 nm) and homogeneously dispersed ruthenium nanoparticles (RuNPs) were obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in various imidazolium derived ionic liquids (ILs: [RMIm][NTf(2)] (R = C(n)H(2n+1) where n = 2; 4; 6; 8; 10) and in the presence of amines as ligands (1-octylamine, 1-hexadecylamine). These nanoparticles were compared to others stabilized either in pure ILs or by the same ligands in THF. NMR experiments ((13)C solution and DOSY) demonstrate that the amines are coordinated to the surface of the RuNPs. These RuNPs were investigated for the hydrogenation of aromatics and have shown a high level of recyclability (up to 10 cycles) with neither loss of activity nor significant agglomeration.

20.
J Phys Chem B ; 115(42): 12150-9, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21910488

RESUMO

The influence of the nature of two different ionic liquids, namely 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(1)C(4)Im][NTf(2)], on the catalytic hydrogenation of 1,3-cyclohexadiene with [Rh(COD)(PPh(3))(2)][NTf(2)] (COD = 1,5-cyclooctadiene) was studied. Initially, the effect of different concentrations of 1,3-cyclohexadiene on the molecular interactions and on the structure in two ionic liquids was investigated by NMR and by molecular dynamic simulations. It was found that in both ionic liquids 1,3-cyclohexadiene is solvated preferentially in the lipophilic regions. Furthermore, the higher solubility of 1,3-cyclohexadiene in [C(1)C(4)Im][NTf(2)] and the smaller positive values of the excess molar enthalpy of mixing for the 1,3-cyclohexadiene + [C(1)C(4)Im][NTf(2)] system in comparison with 1,3-cyclohexadiene + [C(1)C(1)C(4)Im][NTf(2)] indicate more favorable interactions between 1,3-cyclohexadiene and the C(1)C(4)Im(+) cation than with the C(1)C(1)C(4)Im(+) cation. Subsequently, diffusivity and conductivity measurements of the 1,3-cyclohexadiene + ionic liquid mixtures at different compositions allowed a characterization of mass and charge transport in the media and access to the ionicity of ionic liquids in the mixture. From the dependence of the ratio between molar conductivity and the conductivity inferred from NMR diffusion measurements, Λ(imp)/Λ(NMR), on concentration of 1,3-cyclohexadiene in the ionic liquid mixture, it was found that increasing the amount of 1,3-cyclohexadiene leads to a decrease in the ionicity of the medium. Finally, the reactivity of the catalytic hydrogenation of 1,3-cyclohexadiene using [Rh(COD)(PPh(3))(2)][NTf(2)] performed in [C(1)C(4)Im][NTf(2)] at different compositions of 1,3-cyclohexadiene and in [C(1)C(1)C(4)Im][NTf(2)] at one composition was related linearly to the viscosity, hence the reaction rate is determined by the mass transport properties of the media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA