Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-29158273

RESUMO

IQG-607 is a metal complex previously reported as a promising anti-tuberculosis (TB) drug against isoniazid (INH)-resistant strains of Mycobacterium tuberculosis Unexpectedly, we found that INH-resistant clinical isolates were resistant to IQG-607. Spontaneous mutants resistant to IQG-607 were subjected to whole-genome sequencing, and all sequenced colonies carried alterations in the katG gene. The katG(S315T) mutation was sufficient to confer resistance to IQG-607 in both MIC assays and inside macrophages. Moreover, overexpression of the InhA(S94A) protein caused IQG-607's resistance.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Humanos , Isoniazida/farmacologia , Mutação/genética , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma/métodos
2.
Regul Toxicol Pharmacol ; 86: 11-17, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28232042

RESUMO

In the present study, we evaluated the safety and the possible toxic effects of IQG-607 after acute and 90-day repeated administrations in rats. Single oral administration of IQG-607 (300 or 2000 mg/kg) on female rats did not result in any mortality. No gross lesions were observed in the animals at necropsy. Ninety-day administration test resulted in 20% of deaths, in both male and female rats administered with the highest dose of IQG-607, 300 mg/kg. Repeated administration of the IQG 607 (25, 100 and 300 mg/kg) did not result in any significant body mass alteration, or changes in food and water consumption. The most important clinical sign observed was salivation in both sexes. Importantly, long-term treatment with IQG-607 did not induce alterations in any hematological (for both sex) and serum biochemical (for female) parameters evaluated, even at the highest dose tested. Treatment of male rats with 100 or 300 mg/kg of IQG-607 decreased total cholesterol levels, while animals treated with 100 mg/kg also presented reduction on triglyceride levels. Of note, no treatment induced significant histopathological alterations in tissues of all organs and glands analyzed, even in that group that received the highest dose of IQG-607.


Assuntos
Compostos Ferrosos/toxicidade , Isoniazida/análogos & derivados , Administração Oral , Animais , Índice de Massa Corporal , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Compostos Ferrosos/administração & dosagem , Isoniazida/administração & dosagem , Isoniazida/toxicidade , Masculino , Ratos , Salivação/efeitos dos fármacos , Testes de Toxicidade Aguda/métodos
3.
J Proteome Res ; 15(7): 2236-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27255303

RESUMO

In recent years, phenotypic screening has assumed a leading role in drug discovery efforts. However, development of new drugs from bioactive compounds obtained in screening campaigns requires identification of the cellular targets responsible for their biological activities. A new energetics-based method for target identification is presented: pulse proteolysis and precipitation for target identification (PePTID). In this method, proteins incubated with or without a ligand and submitted to a brief proteolytic pulse are directly analyzed and compared using a label-free semiquantitative mass spectrometry strategy, dispensing the SDS-PAGE readout and greatly improving the throughput. As a proof-of-concept, we applied the PePTID method to identify ATP-binding proteins in Mycobacterium smegmatis, a model system for Mycobacterium tuberculosis, the etiological agent of tuberculosis.


Assuntos
Proteínas de Bactérias/análise , Precipitação Química , Descoberta de Drogas/métodos , Proteólise , Proteínas de Transporte/análise , Ligantes , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química
4.
BMC Biotechnol ; 14: 33, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24766778

RESUMO

BACKGROUND: Annexin V, a 35.8 kDa intracellular protein, is a Ca⁺²-dependent phospholipid binding protein with high affinity to phosphatidylserine (PS), which is a well-known hallmark of apoptosis. Annexin V is a sensitive probe for PS exposure upon the cell membrane, and used for detection of apoptotic cells both in vivo and in vitro. Large-scale production of recombinant human annexin V is worth optimization, because of its wide use in nuclear medicine, radiolabeled with (99m)Tc, for the evaluation of cancer chemotherapy treatments, and its use in identification of apoptotic cells in histologic studies. Here we describe the high-yield production of a tag-free version of human annexin V recombinant protein by linear fed-batch cultivation in a bioreactor. RESULTS: We cloned the human ANXA5 coding sequence into the pET-30a (+) expression vector and expressed rhANXA5 in batch and fed-batch cultures. Using E. coli BL21 (DE3) in a semi-defined medium at 37°C, pH 7 in fed-batch cultures, we obtained a 45-fold increase in biomass production, respective to shaker cultivations. We developed a single-step protocol for rhANXA5 purification using a strong anion-exchange column (MonoQ HR16/10). Using these procedures, we obtained 28.5 mg of homogeneous, nontagged and biologically functional human annexin V recombinant protein from 3 g wet weight of bacterial cells from bioreactor cultures. The identity and molecular mass of rhANXA5 was confirmed by mass spectrometry. Moreover, the purified rhANXA5 protein was functionally evaluated in a FITC-annexin V binding experiment and the results demonstrated that rhANXA5 detected apoptotic cells similarly to a commercial kit. CONCLUSIONS: We describe a new fed-batch method to produce recombinant human annexin V in large scale, which may expand the commercial utilities for rhANXAV to applications such as in vivo imaging studies.


Assuntos
Anexina A5/metabolismo , Técnicas de Cultura Celular por Lotes , Anexina A5/química , Anexina A5/genética , Biomassa , Cromatografia por Troca Iônica , Clonagem Molecular , Escherichia coli/metabolismo , Fluoresceína-5-Isotiocianato/química , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
5.
Invest New Drugs ; 32(6): 1301-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052233

RESUMO

PURPOSE: 5-fluorouracil (5-FU) has been broadly used to treat solid tumors for more than 50 years. One of the major side effects of fluoropyrimidines therapy is oral and intestinal mucositis. Human uridine phosphorylase (hUP) inhibitors have been suggested as modulators of 5-FU toxicity. Therefore, the present study aimed to test the ability of hUP blockers in preventing mucositis induced by 5-FU. METHODS: We induced intestinal mucositis in Wistar rats with 5-FU, and the intestinal damage was evaluated in presence or absence of two hUP1 inhibitors previously characterized. We examined the loss of weight and diarrhea following the treatment, the villus integrity, uridine levels in plasma, and the neutrophil migration by MPO activity. RESULTS: We found that one of the compounds, 6-hydroxy-4-methyl-1H-pyridin-2-one-3-carbonitrile was efficient to promote intestinal mucosa protection and to inhibit the hUP1 enzyme, increasing the uridine levels in the plasma of animals. However, the loss of body weight, diarrhea intensity or neutrophil migration remained unaffected. CONCLUSION: Our results bring support to the hUP1 inhibitor strategy as a novel possibility of prevention and treatment of mucositis during the 5-FU chemotherapy, based on the approach of uridine accumulation in plasma and tissues.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Fluoruracila/efeitos adversos , Enteropatias/tratamento farmacológico , Mucosite/tratamento farmacológico , Piridonas/uso terapêutico , Uridina Fosforilase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Enteropatias/induzido quimicamente , Enteropatias/metabolismo , Enteropatias/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Mucosite/induzido quimicamente , Mucosite/metabolismo , Mucosite/patologia , Peroxidase/metabolismo , Ratos Wistar , Uridina/sangue
6.
J Nat Prod ; 77(10): 2190-5, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25302422

RESUMO

Acute liver injury was induced in male BALB/c mice by coadministering isoniazid and rifampicin. In this work, the effects of resveratrol (1) were investigated in the hepatotoxicity caused by isoniazid-rifampicin in mice. Compound 1 was administered 30 min prior to isoniazid-rifampicin. Serum biochemical tests, liver histopathological examination, oxidative stress, myeloperoxidase activity, cytokine production (TNF-α, IL-12p70, and IL-10), and mRNA expression of SIRT1-7 and PPAR-γ/PGC1-α were evaluated. The administration of 1 significantly decreased aspartate transaminase and alanine aminotransferase levels, myeloperoxidase activity, and cytokine levels. Furthermore, 1 reverted the decrease of catalase and glutathione activities and ameliorated the histopathological alterations associated with antituberculosis drugs. Modulation of SIRT1 and PPAR-γ/PGC1-α expression is likely involved in the protective effects of 1. The results presented herein show that 1 was able to largely prevent the hepatotoxicity induced by isoniazid and rifampicin in mice, mainly by modulating SIRT1 mRNA expression.


Assuntos
Antituberculosos/farmacologia , Isoniazida/farmacologia , Rifampina/farmacologia , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/efeitos dos fármacos , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Glutationa/metabolismo , Interleucina-10/análise , Interleucina-10/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , Peroxidase/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resveratrol , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Fatores de Transcrição/efeitos dos fármacos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/farmacologia
7.
Arch Biochem Biophys ; 536(1): 53-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23756762

RESUMO

Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.


Assuntos
Trifosfato de Adenosina/metabolismo , Monofosfato de Citidina/metabolismo , Desoxicitidina Monofosfato/metabolismo , Mycobacterium tuberculosis/enzimologia , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Núcleosídeo-Fosfato Quinase/química , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
8.
J Chem Inf Model ; 53(9): 2390-401, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23889525

RESUMO

Mycobacterium tuberculosis InhA (MtInhA) is an attractive enzyme to drug discovery efforts due to its validation as an effective biological target for tuberculosis therapy. In this work, two different virtual-ligand-screening approaches were applied in order to identify new InhA inhibitors' candidates from a library of ligands selected from the ZINC database. First, a 3-D pharmacophore model was built based on 36 available MtInhA crystal structures. By combining structure-based and ligand-based information, four pharmacophoric points were designed to select molecules able to satisfy the binding features of MtInhA substrate-binding cavity. The second approach consisted of using four well established docking programs, with different search algorithms, to compare the binding mode and score of the selected molecules from the aforementioned library. After detailed analyses of the results, six ligands were selected for in vitro analysis. Three of these molecules presented a satisfactory inhibitory activity with IC50 values ranging from 24 (±2) µM to 83 (±5) µM. The best compound presented an uncompetitive inhibition mode to NADH and 2-trans-dodecenoyl-CoA substrates, with Ki values of 24 (±3) µM and 20 (±2) µM, respectively. These molecules were not yet described as antituberculars or as InhA inhibitors, making its novelty interesting to start efforts on ligand optimization in order to identify new effective drugs against tuberculosis having InhA as a target. More studies are underway to dissect the discovered uncompetitive inhibitor interactions with MtInhA.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Interface Usuário-Computador , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligantes , Oxirredutases/química , Oxirredutases/metabolismo , Conformação Proteica
9.
J Biol Inorg Chem ; 17(2): 275-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21952749

RESUMO

For over a decade, tuberculosis (TB) has been the leading cause of death among infectious diseases. Since the 1950s, isoniazid has been used as a front-line drug in the treatment of TB; however, resistant TB strains have limited its use. The major route of isoniazid resistance relies on KatG enzyme disruption, which does not promote an electron transfer reaction. Here, we investigated the reactivity of isoniazid metal complexes as prototypes for novel self-activating metallodrugs against TB with the aim to overcome resistance. Reactivity studies were conducted with hydrogen peroxide, hexacyanoferrate(III), and aquopentacyanoferrate(III). The latter species showed a preference for the inner-sphere electron transfer reaction pathway. Additionally, electron transfer reaction performed with either free isoniazid or (isoniazid)pentacyanoferrate(II) complex resulted in similar oxidized isoniazid derivatives as observed when the KatG enzyme was used. However, upon metal coordination, a significant enhancement in the formation of isonicotinic acid was observed compared with that of isonicotinamide. These results suggest that the pathway of a carbonyl-centered radical might be favored upon coordination to the Fe(II) owing to the π-back-bonding effect promoted by this metal center; therefore, the isoniazid metal complex could serve as a potential metallodrug. Enzymatic inhibition assays conducted with InhA showed that the cyanoferrate moiety is not the major player involved in this inhibition but the presence of isoniazid is required in this process. Other isoniazid metal complexes, [Ru(CN)(5)(izd)](3-) and [Ru(NH(3))(5)(izd)](2+) (where izd is isoniazid), were also unable to inhibit InhA, supporting our proposed self-activating mechanism of action. We propose that isoniazid reactivity can be rationally modulated by metal coordination chemistry, leading to the development of novel anti-TB metallodrugs.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Isoniazida/química , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Farmacorresistência Bacteriana , Compostos Férricos/química , Humanos , Mycobacterium tuberculosis/enzimologia , Oxirredução , Tuberculose/tratamento farmacológico , Tuberculose/enzimologia
10.
Arch Biochem Biophys ; 517(1): 1-11, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22119138

RESUMO

Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/isolamento & purificação , Clonagem Molecular , Glutaminase/metabolismo , Humanos , Cinética , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Titulometria
11.
Arch Biochem Biophys ; 505(2): 202-12, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21035424

RESUMO

The pyrH-encoded uridine 5'-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg²(+) as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimologia , Pirimidinas/metabolismo , Transferases/genética , Transferases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Genes Supressores , Guanosina Trifosfato/metabolismo , Cinética , Ligantes , Dados de Sequência Molecular , Peso Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray , Transferases/química , Transferases/isolamento & purificação , Uridina Trifosfato/metabolismo
12.
Arch Biochem Biophys ; 512(2): 143-53, 2011 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-21672513

RESUMO

The emergence of drug-resistant strains of Mycobacterium tuberculosis, the major causative agent of tuberculosis (TB), and the deadly HIV-TB co-infection have led to an urgent need for the development of new anti-TB drugs. The histidine biosynthetic pathway is present in bacteria, archaebacteria, lower eukaryotes and plants, but is absent in mammals. Disruption of the hisD gene has been shown to be essential for M. tuberculosis survival. Here we present cloning, expression and purification of recombinant hisD-encoded histidinol dehydrogenase (MtHisD). N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtHisD. Analytical gel filtration, metal requirement analysis, steady-state kinetics and isothermal titration calorimetry data showed that homodimeric MtHisD is a metalloprotein that follows a Bi Uni Uni Bi Ping-Pong mechanism. pH-rate profiles and a three-dimensional model of MtHisD allowed proposal of amino acid residues involved in either catalysis or substrate(s) binding.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , Clonagem Molecular , DNA Bacteriano/genética , Dimerização , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica
13.
Arch Biochem Biophys ; 509(1): 108-15, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21295009

RESUMO

Cytidine deaminase (CDA) is a key enzyme in the pyrimidine salvage pathway. It is involved in the hydrolytic deamination of cytidine or 2'-deoxycytidine to uridine or 2'-deoxyuridine, respectively. Here we report the crystal structures of Mycobacterium tuberculosis CDA (MtCDA) in complex with uridine (2.4 Å resolution) and deoxyuridine (1.9 Å resolution). Molecular dynamics (MD) simulation was performed to analyze the physically relevant motions involved in the protein-ligand recognition process, showing that structural flexibility of some protein regions are important to product binding. In addition, MD simulations allowed the analysis of the stability of tetrameric MtCDA structure. These findings open-up the possibility to use MtCDA as a target in future studies aiming to the rational design of new inhibitor of MtCDA-catalyzed chemical reaction with potential anti-proliferative activity on cell growth of M. tuberculosis, the major causative agent of tuberculosis.


Assuntos
Citidina Desaminase/metabolismo , Desoxiuridina/metabolismo , Mycobacterium tuberculosis/enzimologia , Uridina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citidina Desaminase/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/química , Ligação Proteica
14.
J Struct Biol ; 169(3): 413-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035876

RESUMO

The emergence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of tuberculosis, has exacerbated the treatment and control of this disease. Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that recycles cytidine and 2'-deoxycytidine for uridine and 2'-deoxyuridine synthesis, respectively. A probable M. tuberculosis CDA-coding sequence (cdd, Rv3315c) was cloned, sequenced, expressed in Escherichia coli BL21(DE3), and purified to homogeneity. Mass spectrometry, N-terminal amino acid sequencing, gel filtration chromatography, and metal analysis of M. tuberculosis CDA (MtCDA) were carried out. These results and multiple sequence alignment demonstrate that MtCDA is a homotetrameric Zn(2+)-dependent metalloenzyme. Steady-state kinetic measurements yielded the following parameters: K(m)=1004 microM and k(cat)=4.8s(-1) for cytidine, and K(m)=1059 microM and k(cat)=3.5s(-1) for 2'-deoxycytidine. The pH dependence of k(cat) and k(cat)/K(M) for cytidine indicate that protonation of a single ionizable group with apparent pK(a) value of 4.3 abolishes activity, and protonation of a group with pK(a) value of 4.7 reduces binding. MtCDA was crystallized and crystal diffracted at 2.0 A resolution. Analysis of the crystallographic structure indicated the presence of a Zn(2+) coordinated by three conserved cysteines and the structure exhibits the canonical cytidine deaminase fold.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Mycobacterium tuberculosis/enzimologia , Zinco/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Citidina Desaminase/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria Atômica
15.
Arch Biochem Biophys ; 497(1-2): 35-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20226755

RESUMO

Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway, catalyzing the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate (R1P). The human UP type 1 (hUP1) is a molecular target for the design of inhibitors intended to boost endogenous uridine levels to rescue normal tissues from the toxicity of fluoropyrimidine nucleoside chemotherapeutic agents, such as capecitabine and 5-fluorouracil. Here, we describe a method to obtain homogeneous recombinant hUP1, and present initial velocity, product inhibition, and equilibrium binding data. These results suggest that hUP1 catalyzes uridine phosphorolysis by a steady-state ordered bi bi kinetic mechanism, in which inorganic phosphate binds first followed by the binding of uridine, and uracil dissociates first, followed by R1P release. Fluorescence titration at equilibrium showed cooperative binding of either P(i) or R1P binding to hUP1. Amino acid residues involved in either catalysis or substrate binding were proposed based on pH-rate profiles.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Uridina Fosforilase/antagonistas & inibidores , Uridina Fosforilase/metabolismo , Catálise , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribosemonofosfatos/metabolismo , Especificidade por Substrato/genética , Uridina Fosforilase/genética
16.
Bioorg Med Chem ; 18(13): 4769-74, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570524

RESUMO

This work describes for the first time the structure of purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) in complex with sulfate and its natural substrate, 2'-deoxyguanosine, and its application to virtual screening. We report docking studies of a set of molecules against this structure. Application of polynomial empirical scoring function was able to rank docking solutions with good predicting power which opens the possibility to apply this new criterion to analyze docking solutions and screen small-molecule databases for new chemical entities to inhibit MtPNP.


Assuntos
Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia por Raios X , Desoxiguanosina/química , Desoxiguanosina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Purina-Núcleosídeo Fosforilase/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sulfatos/química , Sulfatos/farmacologia
17.
Int J Biol Macromol ; 165(Pt B): 1832-1841, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33075341

RESUMO

Studies have shown that inhibition of Plasmodium falciparum Purine Nucleoside Phosphorylase (PfPNP) blocks the purine salvage pathway in vitro and in vivo. In this study, PfPNP was evaluated as a model in the search for new inhibitors using surface plasmon resonance (SPR). Its expression, purification, oligomeric state, kinetic constants, calorimetric parameters and kinetic mechanisms were obtained. PfPNP was immobilized on a CM5 sensor chip and sensorgrams were produced through binding the enzyme to the substrate MESG and interactions between molecules contained in 10 fractions of natural extracts. The oligomeric state showed that recombinant PfPNP is a hexamer. The true steady-state kinetic parameters for the substrate inosine were: KM 17 µM, kcat 1.2 s-1, VMax 2.2 U/mg and kcat/KM 7 × 10-4; for MESG they were: KM 131 µM, kcat 2.4 s-1, VMax 4.4 U/mg and kcat/KM 1.8 × 10-4. The thermodynamic parameters for the substrate Phosphate were: ΔG - 5.8 cal mol-1, ΔH - 6.5 cal mol-1 and ΔS - 2.25 cal mol-1/degree. The ITC results demonstrated that the binding of phosphate to free PfPNP led to a significant change in heat and association constants and thermodynamic parameters. A sequential ordered mechanism was proposed as the kinetic mechanism. Three plant extracts contained molecules capable of interacting with PfPNP, showing different levels of affinity. The identification of plant extract fractions containing molecules that interact with recombinant PfPNP using SRP validates this target as a model in the search for new inhibitors. In this study, we showed for the first time the true steady-state kinetic parameters for reactions catalyzed by PfPNP and a model using PfPNP as a target for High-throughput Screening for new inhibitors through SPR. This knowledge will allow for the development of more efficient research methods in the search for new drugs against malaria.


Assuntos
Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Bioensaio , Calorimetria , Guanosina/análogos & derivados , Guanosina/metabolismo , Hesperidina/química , Hesperidina/farmacologia , Cinética , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos , Multimerização Proteica , Purina-Núcleosídeo Fosforilase/química , Quercetina/química , Quercetina/farmacologia , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Termodinâmica , Tionucleosídeos/metabolismo
18.
J Bacteriol ; 191(8): 2884-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181797

RESUMO

The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed.


Assuntos
Desoxicitidina Monofosfato/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Expressão Gênica , Cinética , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
J Pharmacol Exp Ther ; 330(3): 756-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19561153

RESUMO

It has been demonstrated that kinin B(1) receptors are highly up-regulated under several stressful stimuli, such as infection. However, there is no evidence indicating whether Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) might lead to B(1) receptor up-regulation. In this study, we demonstrate that Pg-LPS injection into the rat paw resulted in a marked functional up-regulation of B(1) receptors (as measured by an increase of B(1) receptor-induced edema), which was preceded by a rapid rise in B(1) receptor mRNA expression. The local administration of Pg-LPS also resulted in a prominent production of the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha), followed by an increase of neutrophil influx; both events were observed at periods before B(1) receptor induction. The functional and molecular Pg-LPS-elicited B(1) receptor up-regulation was significantly reduced by the glucocorticoid dexamethasone (0.5 mg/kg s.c.), and to a lesser extent by the chimeric anti-TNF-alpha antibody infliximab (1 mg/kg s.c.). Of high relevance, we show for the first time that a single administration of the proresolution lipid mediator (5S,12R,18R)-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic acid (resolvin E1; 300 ng/rat i.p.) was able to markedly down-regulate Pg-LPS-driven B(1) receptor expression, probably by inhibiting TNF-alpha production and neutrophil migration. Collectively, the present findings clearly suggest that Pg-LPS is able to induce the up-regulation of B(1) receptors through mechanisms involving TNF-alpha release and neutrophil influx, which are largely sensitive to resolvin E1. It is tempting to suggest that kinin B(1) receptors might well represent a pivotal pathway for the inflammatory responses evoked by P. gingivalis and its virulence factors.


Assuntos
Lipopolissacarídeos/farmacologia , Porphyromonas gingivalis/química , Receptor B1 da Bradicinina/biossíntese , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Dexametasona/farmacologia , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Pé/patologia , Infliximab , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Peroxidase/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptor B1 da Bradicinina/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Arch Biochem Biophys ; 486(2): 155-64, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19416718

RESUMO

Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) is numbered among targets for persistence of the causative agent of tuberculosis. Here, it is shown that MtPNP is more specific to natural 6-oxopurine nucleosides and synthetic compounds, and does not catalyze the phosphorolysis of adenosine. Initial velocity, product inhibition and equilibrium binding data suggest that MtPNP catalyzes 2'-deoxyguanosine (2dGuo) phosphorolysis by a steady-state ordered bi bi kinetic mechanism, in which inorganic phosphate (P(i)) binds first followed by 2dGuo, and ribose 1-phosphate dissociates first followed by guanine. pH-rate profiles indicated a general acid as being essential for both catalysis and 2dGuo binding, and that deprotonation of a group abolishes P(i) binding. Proton inventory and solvent deuterium isotope effects indicate that a single solvent proton transfer makes a modest contribution to the rate-limiting step. Pre-steady-state kinetic data indicate that product release appears to contribute to the rate-limiting step for MtPNP-catalyzed reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Purina-Núcleosídeo Fosforilase/metabolismo , Proteínas de Bactérias/genética , Concentração de Íons de Hidrogênio , Cinética , Purina-Núcleosídeo Fosforilase/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA