Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791477

RESUMO

Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.


Assuntos
Opsinas , Venenos , Animais , Opsinas/genética , Filogenia , Opsinas de Bastonetes/genética
2.
Mol Phylogenet Evol ; 195: 108065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531492

RESUMO

Poison frogs (Dendrobatidae) are famous for their aposematic species, having a combination of diverse color patterns and defensive skin toxins, yet most species in this family are inconspicuously colored and considered non-aposematic. Epipedobates is among the youngest genus-level clades of Dendrobatidae that includes both aposematic and inconspicuous species. Using Sanger-sequenced mitochondrial and nuclear markers, we demonstrate deep genetic divergences among inconspicuous species of Epipedobates but relatively shallow genetic divergences among conspicuous species. Our phylogenetic analysis includes broad geographic sampling of the inconspicuous lineages typically identified as E. boulengeri and E. espinosai, which reveals two putative new species, one in west-central Colombia (E. sp. 1) and the other in north-central Ecuador (E. aff. espinosai). We conclude that E. darwinwallacei is a junior subjective synonym of E. espinosai. We also clarify the geographic distributions of inconspicuous Epipedobates species including the widespread E. boulengeri. We provide a qualitative assessment of the phenotypic diversity in each nominal species, with a focus on the color and pattern of inconspicuous species. We conclude that Epipedobates contains eight known valid species, six of which are inconspicuous. A relaxed molecular clock analysis suggests that the most recent common ancestor of Epipedobates is âˆ¼11.1 million years old, which nearly doubles previous estimates. Last, genetic information points to a center of species diversity in the Chocó at the southwestern border of Colombia with Ecuador. A Spanish translation of this text is available in the supplementary materials.


Assuntos
Anuros , Rãs Venenosas , Animais , Filogenia , Anuros/genética , Mitocôndrias , Equador
3.
Bioinformatics ; 38(13): 3361-3366, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35608310

RESUMO

MOTIVATION: Transposable elements (TEs) are ubiquitous in genomes and many remain active. TEs comprise an important fraction of the transcriptomes with potential effects on the host genome, either by generating deleterious mutations or promoting evolutionary novelties. However, their functional study is limited by the difficulty in their identification and quantification, particularly in non-model organisms. RESULTS: We developed a new pipeline [explore active transposable elements (ExplorATE)] implemented in R and bash that allows the quantification of active TEs in both model and non-model organisms. ExplorATE creates TE-specific indexes and uses the Selective Alignment (SA) to filter out co-transcribed transposons within genes based on alignment scores. Moreover, our software incorporates a Wicker-like criteria to refine a set of target TEs and avoid spurious mapping. Based on simulated and real data, we show that the SA strategy adopted by ExplorATE achieved better estimates of non-co-transcribed elements than other available alignment-based or mapping-based software. ExplorATE results showed high congruence with alignment-based tools with and without a reference genome, yet ExplorATE required less execution time. Likewise, ExplorATE expands and complements most previous TE analyses by incorporating the co-transcription and multi-mapping effects during quantification, and provides a seamless integration with other downstream tools within the R environment. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/FemeniasM/ExplorATEproject and https://github.com/FemeniasM/ExplorATE_shell_script. Data available on request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Elementos de DNA Transponíveis , Software , RNA-Seq , Sequenciamento do Exoma , Transcriptoma
4.
Front Zool ; 18(1): 37, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348772

RESUMO

BACKGROUND: The acoustic adaptation hypothesis (AAH) states that signals should evolve towards an optimal transmission of the intended information from senders to intended receivers given the environmental constraints of the medium that they traverse. To date, most AAH studies have focused on the effect of stratified vegetation on signal propagation. These studies, based on the AAH, predict that acoustic signals should experience less attenuation and degradation where habitats are less acoustically complex. Here, we explored this effect by including an environmental noise dimension to test some AAH predictions in two clades of widespread amphibians (Bufonidae and Ranidae) that actively use acoustic signals for communication. By using data from 106 species in these clades, we focused on the characterization of the differences in dominant frequency (DF) and frequency contour (i.e., frequency modulation [FM] and harmonic performances) of mating calls and compared them between species that inhabit flowing-water or still-water environments. RESULTS: After including temperature, body size, habitat type and phylogenetic relationships, we found that DF differences among species were explained mostly by body size and habitat structure. We also showed that species living in lentic habitats tend to have advertisement calls characterized by well-defined FM and harmonics. Likewise, our results suggest that flowing-water habitats can constrain the evolutionary trajectories of the frequency-contour traits of advertisement calls in these anurans. CONCLUSIONS: Our results may support AAH predictions in frogs that vocalize in noisy habitats because flowing-water environments often produce persistent ambient noise. For instance, these anurans tend to generate vocalizations with less well-defined FM and harmonic traits. These findings may help us understand how noise in the environment can influence natural selection as it shapes acoustic signals in affected species.

5.
Molecules ; 26(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641297

RESUMO

Since their discovery, nicotinic acetylcholine receptors (nAChRs) have been extensively studied to understand their function, as well as the consequence of alterations leading to disease states. Importantly, these receptors represent pharmacological targets to treat a number of neurological and neurodegenerative disorders. Nevertheless, their therapeutic value has been limited by the absence of high-resolution structures that allow for the design of more specific and effective drugs. This article offers a comprehensive review of five decades of research pursuing high-resolution structures of nAChRs. We provide a historical perspective, from initial structural studies to the most recent X-ray and cryogenic electron microscopy (Cryo-EM) nAChR structures. We also discuss the most relevant structural features that emerged from these studies, as well as perspectives in the field.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Receptores Nicotínicos/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Conformação Proteica , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(36): 10121-6, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551065

RESUMO

Attine ants evolved farming 55-60 My before humans. Although evolutionarily derived leafcutter ants achieved industrial-scale farming, extant species from basal attine genera continue to farm loosely domesticated fungal cultivars capable of pursuing independent reproductive interests. We used feeding experiments with the basal attine Mycocepurus smithii to test whether reproductive allocation conflicts between farmers and cultivars constrain crop yield, possibly explaining why their mutualism has remained limited in scale and productivity. Stoichiometric and geometric framework approaches showed that carbohydrate-rich substrates maximize growth of both edible hyphae and inedible mushrooms, but that modest protein provisioning can suppress mushroom formation. Worker foraging was consistent with maximizing long-term cultivar performance: ant farmers could neither increase carbohydrate provisioning without cultivars allocating the excess toward mushroom production, nor increase protein provisioning without compromising somatic cultivar growth. Our results confirm that phylogenetically basal attine farming has been very successful over evolutionary time, but that unresolved host-symbiont conflict may have precluded these wild-type symbioses from rising to ecological dominance. That status was achieved by the evolutionarily derived leafcutter ants following full domestication of a coevolving cultivar 30-35 Mya after the first attine ants committed to farming.


Assuntos
Agaricales/efeitos dos fármacos , Formigas/fisiologia , Evolução Biológica , Proteínas/farmacologia , Simbiose/fisiologia , Agaricales/fisiologia , Animais , Formigas/classificação , Metabolismo dos Carboidratos , Carboidratos/farmacologia , Filogenia , Proteínas/metabolismo
7.
Mol Phylogenet Evol ; 125: 40-50, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29551526

RESUMO

Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin, where most toxins are stored.


Assuntos
Anuros/genética , Anuros/parasitologia , Perfilação da Expressão Gênica , Parasitos/fisiologia , Animais , Biodiversidade , Especiação Genética , Interações Hospedeiro-Parasita/genética , Filogenia , Venenos , Especificidade da Espécie , Transcriptoma/genética
8.
J Therm Biol ; 73: 50-60, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29549991

RESUMO

Temperature increases can impact biodiversity and predicting their effects is one of the main challenges facing global climate-change research. Ectotherms are sensitive to temperature change and, although predictions indicate that tropical species are highly vulnerable to global warming, they remain one of the least studied groups with respect to the extent of physiological variation and local extinction risks. We model the extinction risks for a tropical heliothermic teiid lizard (Kentropyx calcarata) integrating previously obtained information on intraspecific phylogeographic structure, eco-physiological traits and contemporary species distributions in the Amazon rainforest and its ecotone to the Cerrado savannah. We also investigated how thermal-biology traits vary throughout the species' geographic range and the consequences of such variation for lineage vulnerability. We show substantial variation in thermal tolerance of individuals among thermally distinct sites. Thermal critical limits were highly correlated with operative environmental temperatures. Our physiological/climatic model predicted relative extinction risks for local populations within clades of K. calcarata for 2050 ranging between 26.1% and 70.8%, while for 2070, extinction risks ranged from 52.8% to 92.8%. Our results support the hypothesis that tropical-lizard taxa are at high risk of local extinction caused by increasing temperatures. However, the thermo-physiological differences found across the species' distribution suggest that local adaptation may allow persistence of this tropical ectotherm in global warming scenarios. These results will serve as basis to further research to investigate the strength of local adaptation to climate change. Persistence of Kentropyx calcarata also depends on forest preservation, but the Amazon rainforest is currently under high deforestation rates. We argue that higher conservation priority is necessary so the Amazon rainforest can fulfill its capacity to absorb the impacts of temperature increase on tropical ectotherms during climate change.


Assuntos
Aclimatação , Temperatura Corporal , Extinção Biológica , Aquecimento Global , Lagartos/fisiologia , Animais , Feminino , Locomoção , Masculino , Modelos Biológicos , Floresta Úmida , Fatores de Risco , Temperatura , Clima Tropical
9.
Mol Biol Evol ; 33(4): 1068-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26782998

RESUMO

Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses.


Assuntos
Alcaloides/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Filogenia , Venenos/química , Alcaloides/química , Alcaloides/classificação , Alcaloides/metabolismo , Venenos de Anfíbios/química , Venenos de Anfíbios/genética , Venenos de Anfíbios/metabolismo , Animais , Anuros/genética , Batraquiotoxinas/química , Batraquiotoxinas/genética , Batraquiotoxinas/metabolismo , Sítios de Ligação , Estudos de Associação Genética , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Venenos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Pele/química , Pele/efeitos dos fármacos
10.
Mol Phylogenet Evol ; 109: 283-295, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28089841

RESUMO

Rapid radiation coupled with low genetic divergence often hinders species delimitation and phylogeny estimation even if putative species are phenotypically distinct. Some aposematic species, such as poison frogs (Dendrobatidae), have high levels of intraspecific color polymorphism, which can lead to overestimation of species when phenotypic divergence primarily guides species delimitation. We explored this possibility in the youngest origin of aposematism (3-7 MYA) in poison frogs, Epipedobates, by comparing genetic divergence with color and acoustic divergence. We found low genetic divergence (2.6% in the 16S gene) despite substantial differences in color and acoustic signals. While chemical defense is inferred to have evolved in the ancestor of Epipedobates, aposematic coloration evolved at least twice or was lost once in Epipedobates, suggesting that it is evolutionarily labile. We inferred at least one event of introgression between two cryptically colored species with adjacent ranges (E. boulengeri and E. machalilla). We also find evidence for peripheral isolation resulting in phenotypic divergence and potential speciation of the aposematic E. tricolor from the non-aposematic E. machalilla. However, we were unable to estimate a well-supported species tree or delimit species using multispecies coalescent models. We attribute this failure to factors associated with recent speciation including mitochondrial introgression, incomplete lineage sorting, and too few informative molecular characters. We suggest that species delimitation within young aposematic lineages such as Epipedobates will require genome-level molecular studies. We caution against relying solely on DNA barcoding for species delimitation or identification and highlight the value of phenotypic divergence and natural history in delimiting species.


Assuntos
Anuros/classificação , Mimetismo Biológico , Variação Genética , Venenos de Anfíbios , Animais , Anuros/anatomia & histologia , Evolução Biológica , Mimetismo Biológico/genética , DNA Mitocondrial , Especiação Genética , Filogenia
12.
Am Nat ; 184(3): 364-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25141145

RESUMO

Most ant colonies are comprised of workers that cooperate to harvest resources and feed developing larvae. Around 50 million years ago (MYA), ants of the attine lineage adopted an alternative strategy, harvesting resources used as compost to produce fungal gardens. While fungus cultivation is considered a major breakthrough in ant evolution, the associated ecological consequences remain poorly understood. Here, we compare the energetics of attine colony-farms and ancestral hunter-gatherer colonies using metabolic scaling principles within a phylogenetic context. We find two major energetic transitions. First, the earliest lower-attine farmers transitioned to lower mass-specific metabolic rates while shifting significant fractions of biomass from ant tissue to fungus gardens. Second, a transition 20 MYA to specialized cultivars in the higher-attine clade was associated with increased colony metabolism (without changes in garden fungal content) and with metabolic scaling nearly identical to hypometry observed in hunter-gatherer ants, although only the hunter-gatherer slope was distinguishable from isometry. Based on these evolutionary transitions, we propose that shifting living-tissue storage from ants to fungal mutualists provided energetic storage advantages contributing to attine diversification and outline critical assumptions that, when tested, will help link metabolism, farming efficiency, and colony fitness.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Formigas/metabolismo , Comportamento Animal , Animais , Evolução Biológica , Fungos/fisiologia , Filogenia , Simbiose
13.
Proc Biol Sci ; 281(1796): 20141761, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25320164

RESUMO

Multimodal signals facilitate communication with conspecifics during courtship, but they can also alert eavesdropper predators. Hence, signallers face two pressures: enticing partners to mate and avoiding detection by enemies. Undefended organisms with limited escape abilities are expected to minimize predator recognition over mate attraction by limiting or modifying their signalling. Alternatively, organisms with anti-predator mechanisms such as aposematism (i.e. unprofitability signalled by warning cues) might elaborate mating signals as a consequence of reduced predation. We hypothesize that calls diversified in association with aposematism. To test this, we assembled a large acoustic signal database for a diurnal lineage of aposematic and cryptic/non-defended taxa, the poison frogs. First, we showed that aposematic and non-aposematic species share similar extinction rates, and aposematic lineages diversify more and rarely revert to the non-aposematic phenotype. We then characterized mating calls based on morphological (spectral), behavioural/physiological (temporal) and environmental traits. Of these, only spectral and temporal features were associated with aposematism. We propose that with the evolution of anti-predator defences, reduced predation facilitated the diversification of vocal signals, which then became elaborated or showy via sexual selection.


Assuntos
Comunicação Animal , Anuros/fisiologia , Evolução Biológica , Acústica , Animais , Anuros/classificação , Masculino , Preferência de Acasalamento Animal , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie
14.
Proc Natl Acad Sci U S A ; 108(15): 6175-80, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444790

RESUMO

Complex phenotypes can be modeled as networks of component traits connected by genetic, developmental, or functional interactions. Aposematism, which has evolved multiple times in poison frogs (Dendrobatidae), links a warning signal to a chemical defense against predators. Other traits are involved in this complex phenotype. Most aposematic poison frogs are ant specialists, from which they sequester defensive alkaloids. We found that aposematic species have greater aerobic capacity, also related to diet specialization. To characterize the aposematic trait network more fully, we analyzed phylogenetic correlations among its hypothesized components: conspicuousness, chemical defense, diet specialization, body mass, active and resting metabolic rates, and aerobic scope. Conspicuous coloration was correlated with all components except resting metabolism. Structural equation modeling on the basis of trait correlations recovered "aposematism" as one of two latent variables in an integrated phenotypic network, the other being scaling with body mass and physiology ("scale"). Chemical defense and diet specialization were uniquely tied to aposematism whereas conspicuousness was related to scale. The phylogenetic distribution of the aposematic syndrome suggests two scenarios for its evolution: (i) chemical defense and conspicuousness preceded greater aerobic capacity, which supports the increased resource-gathering abilities required of ant-mite diet specialization; and (ii) assuming that prey are patchy, diet specialization and greater aerobic capacity evolved in tandem, and both traits subsequently facilitated the evolution of aposematism.


Assuntos
Anuros/classificação , Anuros/metabolismo , Cadeia Alimentar , Animais , Formigas , Evolução Biológica , Peso Corporal , Ingestão de Alimentos , Ácaros , Filogenia
15.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38798461

RESUMO

Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Further, we confirm the presence of alkaloids in two putatively non-toxic frogs from other families. Our data suggest the existence of a phenotypic intermediate between toxin consumption and sequestration-passive accumulation-that differs from active sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms.

16.
Mol Biol Evol ; 29(8): 2001-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22337863

RESUMO

Molecular evolution is simultaneously paced by mutation rate, genetic drift, and natural selection. Life history traits also affect the speed of accumulation of nucleotide changes. For instance, small body size, rapid generation time, production of reactive oxygen species (ROS), and high resting metabolic rate (RMR) are suggested to be associated with faster rates of molecular evolution. However, phylogenetic correlation analyses failed to support a relationship between RMR and molecular evolution in ectotherms. In addition, RMR might underestimate the metabolic budget (e.g., digestion, reproduction, or escaping predation). An alternative is to test other metabolic rates, such as active metabolic rate (AMR), and their association with molecular evolution. Here, I present comparative analyses of the associations between life history traits (i.e., AMR, RMR, body mass, and fecundity) with rates of molecular evolution of and mitochondrial loci from a large ectotherm clade, the poison frogs (Dendrobatidae). My results support a strong positive association between mass-specific AMR and rates of molecular evolution for both mitochondrial and nuclear loci. In addition, I found weaker and genome-specific covariates such as body mass and fecundity for mitochondrial and nuclear loci, respectively. No direct association was found between mass-specific RMR and rates of molecular evolution. Thus, I provide a mechanistic hypothesis of the link between AMRs and the rate of molecular evolution based on an increase in ROS within germ line cells during periodic bouts of hypoxia/hyperoxia related to aerobic exercise. Finally, I propose a multifactorial model that includes AMR as a predictor of the rate of molecular evolution in ectothermic lineages.


Assuntos
Anuros/genética , Anuros/metabolismo , Metabolismo Basal/genética , Evolução Molecular , Animais , Anuros/crescimento & desenvolvimento , Análise dos Mínimos Quadrados , Estágios do Ciclo de Vida/genética , Modelos Genéticos , Filogenia
17.
Rev Med Inst Mex Seguro Soc ; 51(4): 424-7, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-24021072

RESUMO

OBJECTIVE: to determine the prevalence of opportunistic microorganisms and microbial flora in neutropenic enterocolitis in oncohematological pediatric patients. METHODS: a prospective and observational study was done. Patients with diagnosis of acute leukemia and neutropenia were included. Stool cultures were taken to identify microorganisms and microbial flora. A χ(2) test with Yates corrections and Fisher exact test were used in the statistical analysis. RESULTS: 21 patients were included (12 male, 57.1 %). The stool cultures showed that 68 % of microorganisms were Gram-negative. The presence of microorganisms Gram-positive was 20 %, 6 % for Candida sp.; 3 % for Cryptosporidium sp.; and in 3 % were acid fast bacilli. Staphylococcus epidermidis, Enterobacter sp., and Escherichia coli were presented in pure culture. No association was found between Gram-positive and Gram-negative microorganisms with age, white cell count or pure or mixed cultures. CONCLUSIONS: although Gram-negative microorganisms were the most frequent, Gram-positive and other microorganisms that are not detected habitually in feces culture were isolated.


Objetivo: determinar la microbiota y la prevalencia de microorganismos oportunistas en niños con leucemia y enterocolitis neutropénica. Métodos: se realizó un estudio prospectivo observacional en pacientes con leucemia aguda y neutropenia. Se tomaron cultivos de heces para identificar la presencia de bacterias y microbiota. Se aplicó estadística descriptiva para su análisis. Resultados: fueron incluidos 21 pacientes (12 hombres, 57.1 %). En 68 % de los coprocultivos se observó desarrollo de microorganismos gramnegativos. La presencia de microorganismos grampositivos fue de 20 %, 6 % de Candida sp., 3 % de Cryptosporidium sp. y en 3 % se observaron bacilos ácido alcohol resistentes. Staphylococcus epidermidis, Enterobacter sp., y Escherichia coli se observaron en cultivo puro. No se encontró asociación entre microorganismos grampositivos y gramnegativos con la edad, el recuento leucocitario ni el cultivo puro o mixto.Conclusiones: aunque los microorganismos gramnegativos fueron los más frecuentes, se aislaron de manera importante grampositivos y otros que no se buscan de rutina en el coprocultivo.


Assuntos
Enterocolite Neutropênica/microbiologia , Fezes/microbiologia , Leucemia Mieloide Aguda/microbiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/microbiologia , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Infecções Oportunistas/microbiologia , Estudos Prospectivos
18.
Ecol Evol ; 13(3): e9842, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911313

RESUMO

Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony-informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.

19.
PLoS Biol ; 7(3): e56, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19278298

RESUMO

The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved.


Assuntos
Anuros/genética , Biodiversidade , Evolução Biológica , Especiação Genética , Anfíbios/genética , Animais , Geologia , Modelos Biológicos , Filogenia , América do Sul , Clima Tropical
20.
ACS Omega ; 7(6): 4750-4756, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187295

RESUMO

Silver nanoparticles are recognized for their numerous physical, biological, and pharmaceutical applications. In the present study, the interaction of silver clusters with monosaccharide molecules is examined to identify which molecule works better as a reducing agent in the application of a green synthesis approach. Geometry optimization of clusters containing one, three, and five silver atoms is performed along with the optimization of α-d-glucose, α-d-ribose, d-erythrose, and glyceraldehyde using density functional theory. Optimized geometries allow identifying the interaction formed in the silver cluster and monosaccharide complexes. An electron localization function analysis is performed to further analyze the interaction found and explain the reduction process in the formation of silver nanoparticles. The overall results indicate that glyceraldehyde presents the best characteristics to serve as the most efficient reducing agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA