Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 248: 116299, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38865928

RESUMO

Infections caused by microorganisms are a public health problem worldwide. New biodetection systems are essential to diagnose with accuracy resulting in more effective treatment. In this work, we propose a ConA-conjugated graphene quantum dots and polypyrrole film-based biosensor for label-free detection of Candida albicans, Candida glabrata, Candida tropicalis, E. coli, B. subitilis, and S. aureus. We modified polypyrrole and graphene quantum dots (PPY-QDGs) with Concanavalin A (Con A) lectin. ConA is a glucose/mannose-specific lectin. The results showed that ConA lectin has the highest binding affinity for C. tropicalis and S. subtilis. PPY-GQDs-ConA binding profile revealed differential response for Candida spp (C. tropicalis > C. albicans > C. glabrata) and bacterial (B. subtilis > S. aureus > E. coli). The limits of detection (LOD) obtained were 1.42 CFU/mL for C. albicans, and 3.72 CFU/mL for C. glabrata. C. tropicalis yielded a LOD of 0.18 CFU/mL. The respective LODs for the evaluated bacteria were 0.39 CFU/mL for S. aureus, 0.72 CFU/mL for S. subtilis, and 2.63 CFU/mL for E. coli. The differential response obtained for the sensor can be attributed to the heterogeneous distribution of carbohydrates on the microorganism's surfaces. The proposed system based on a flexible substrate is effective for microbiological diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA