Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769075

RESUMO

The main cause of subretinal neovascularisation in wet age-related macular degeneration (AMD) is an abnormal expression in the retinal pigment epithelium (RPE) of the vascular endothelial growth factor (VEGF). Current approaches for the treatment of AMD present considerable issues that could be overcome by encapsulating anti-VEGF drugs in suitable nanocarriers, thus providing better penetration, higher retention times, and sustained release. In this work, the ability of large pore mesoporous silica nanoparticles (LP-MSNs) to transport and protect nucleic acid molecules is exploited to develop an innovative LP-MSN-based nanosystem for the topical administration of anti-VEGF siRNA molecules to RPE cells. siRNA is loaded into LP-MSN mesopores, while the external surface of the nanodevices is functionalised with polyethylenimine (PEI) chains that allow the controlled release of siRNA and promote endosomal escape to facilitate cytosolic delivery of the cargo. The successful results obtained for VEGF silencing in ARPE-19 RPE cells demonstrate that the designed nanodevice is suitable as an siRNA transporter.


Assuntos
Nanopartículas , Fator A de Crescimento do Endotélio Vascular , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Dióxido de Silício/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Nanomedicine ; 11(1): 39-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25072378

RESUMO

Blood clots when it contacts foreign surfaces following platelet activation. This can be catastrophic in clinical settings involving extracorporeal circulation such as during heart-lung bypass where blood is circulated in polyvinyl chloride tubing. Studies have shown, however, that surface-bound carbon nanotubes may prevent platelet activation, the initiator of thrombosis. We studied the blood biocompatibility of polyvinyl chloride, surface-modified with multi-walled carbon nanotubes in vitro and in vivo. Our results show that surface-bound multi-walled carbon nanotubes cause platelet activation in vitro and devastating thrombosis in an in vivo animal model of extracorporeal circulation. The mechanism of the pro-thrombotic effect likely involves direct multi-walled carbon nanotube-platelet interaction with Ca(2+)-dependant platelet activation. These experiments provide evidence, for the first time, that modification of surfaces with nanomaterials modulates blood biocompatibility in extracorporeal circulation.


Assuntos
Materiais Biocompatíveis/química , Nanomedicina/métodos , Nanotubos de Carbono/química , Animais , Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Cálcio/química , Ponte Cardiopulmonar , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Perfusão , Ativação Plaquetária , Cloreto de Polivinila/química , Proteômica , Coelhos , Propriedades de Superfície , Trombose/metabolismo
3.
Carcinogenesis ; 35(2): 324-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24085798

RESUMO

Platelets have been implicated in colon cancer metastasis and prognosis but the underlying molecular mechanisms remain unclear. We evaluated the role of the different mitogen-activated protein kinase (MAPK) pathways in platelet-stimulated matrix metalloproteinase-9 (MMP-9) generation and colon cancer invasion. In addition, proteins released during platelet-tumour cell interactions were studied. For this purpose, interactions of Caco-2 and HT29 cells with platelets were studied using scanning electron microscopy, aggregometry, flow cytometry and cell invasion chambers. Quantitative PCR and zymography were used to study MMP-9 gene expression and activity, respectively, whereas western blot was used to study p38MAPK. Finally, the origin of proteins during platelet-cancer cell interactions was investigated using stable isotope labelling by amino acids in cell culture (SILAC)-based proteomics. We found that platelets promoted p38MAPK phosphorylation and MMP-9 up-regulation in both cell lines, with the subsequent cell-invasion-promoting effects. Pharmacological inhibition of p38MAPK led to a significant down-regulation of MMP-9 and colon cancer cell invasiveness. Also, p38MAPK-small interfering RNA abolished the induction of platelet-stimulated MMP-9. SILAC experiments demonstrated that thrombospondin 1 (TSP1) was released mainly from platelets and clusterin by both platelets and cancer cells. Finally, inhibition of TSP1 and clusterin abolished p38MAPK phosphorylation, MMP-9 activity and platelet-stimulated colon cancer invasion. Our results indicate that platelet-secreted TSP1 and clusterin promote the signal regulation of MMP-9 in platelet-induced colonic cancer invasion via a P38MAPK-regulated pathway. These findings are relevant to the development of therapeutic approaches to preventing and reducing tumour cell metastasis induced by colon adenocarcinoma.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Plaquetas/metabolismo , Clusterina/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Western Blotting , Células CACO-2 , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Clusterina/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Células HT29 , Humanos , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica , Fosforilação , Proteômica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Espectrometria de Massas em Tandem , Proteínas Quinases p38 Ativadas por Mitógeno/genética
4.
J Am Chem Soc ; 135(4): 1438-44, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23301582

RESUMO

The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalized by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake efficiency. The presence of a biomolecular corona may confer specific interactions between the nanoparticle-corona complex and the cell surface including triggering of regulated cell uptake. An important effect of the corona is, however, a reduction in the purely unspecific interactions between the bare material and the cell membrane, which in itself disregarding specific interactions, causes a decrease in cellular uptake. We suggest that future nanoparticle-cell studies include, together with characterization of size, charge, and dispersion stability, an evaluation of the adhesion properties of the material to relevant membranes.


Assuntos
Membrana Celular/química , Nanopartículas/química , Adsorção , Linhagem Celular , Humanos , Cinética , Bicamadas Lipídicas/química , Propriedades de Superfície
5.
ACS Appl Bio Mater ; 3(2): 997-1007, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019301

RESUMO

Surface active phospholipids are present in fluids of biological relevance, and their adsorption may condition and determine the response of carbon and nanocarbon surfaces when they are immersed in physiological media. In this work, the adsorption and assembly of liposomes at carbon interfaces were investigated to understand the effect of surface termination on the extent and mode of assembly of lipid aggregates. Liposomes of natural lipids were prepared from a mixture of phosphatidylcholine (PC) and phosphatidylserine (PS), and their hydrodynamic size and surface zeta potential were studied as a function of pH. Adsorption was investigated at graphitic amorphous carbon surfaces (a-C) and at these surfaces after oxidative treatments (a-C:O). Infrared surface spectroscopy experiments show that PC/PS liposomes adsorb at a-C surfaces exclusively, independently of pH, while no adsorption is observed at a-C:O materials. Nanogravimetry and fluorescence imaging experiments in solution indicate that adsorption at a-C occurs as supported intact vesicles. Interestingly, PC/PS adsorption at oxidized surfaces was observed only in the presence of a dication such as Ca2+, a behavior that was attributed to screening of surface-liposome repulsive electrostatic interactions. Vesicle rupture experiments show that lipids adsorb as monolayers on graphitic surfaces, whereas adsorbate structures correspond to bilayers in the case of oxidized carbons. These results therefore demonstrate a strong dependence of adsorbate structure on both carbon chemistry and buffer composition. These findings have important implications for the design of carbon nanoparticles, carbon electrodes, or carbon coatings for applications in biology and medicine.

6.
Materials (Basel) ; 11(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751544

RESUMO

The development of novel oral drug delivery systems is an expanding area of research and both new approaches for improving their efficacy and the investigation of their potential toxicological effect are crucial and should be performed in parallel. Polystyrene nanoparticles (NPs) have been used for the production of diagnostic and therapeutic nanosystems, are widely used in food packaging, and have also served as models for investigating NPs interactions with biological systems. The mucous gel layer that covers the epithelium of the gastrointestinal system is a complex barrier-exchange system that it is mainly constituted by mucin and it constitutes the first physical barrier encountered after ingestion. In this study, we aimed to investigate the effect of polystyrene NPs on mucin and its potential role during NP⁻cell interactions. For this purpose, we evaluated the interaction of polystyrene NPs with mucin in dispersion by dynamic light scattering and with a deposited layer of mucin using a quartz crystal microbalance with dissipation technology. Next, we measured cell viability and the apoptotic state of three enterocyte-like cell lines that differ in their ability to produce mucin, after their exposure to the NPs. Positive charged NPs showed the ability to strongly interact and aggregate mucin in our model. Positive NPs affected cell viability and induced apoptosis in all cell lines independently of their ability of produce mucin.

7.
Int J Nanomedicine ; 10: 5107-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26316743

RESUMO

BACKGROUND: Engineered nanoparticles (NPs) can induce platelet activation and aggregation, but the mechanisms underlying these interactions are not well understood. This could be due in part to use of devices that study platelet function under quasi-static conditions with low sensitivity to measure platelet microaggregation. Therefore, in this study we investigated the pharmacological pathways and regulators of NP-induced platelet microaggregation under flow conditions at nanoscale using quartz crystal microbalance with dissipation (QCM-D) and compared the data thus obtained with those generated by light aggregometry. METHODS: Blood was collected from healthy volunteers, and platelet-rich plasma was obtained. Thrombin receptor-activating peptide, a potent stimulator of platelet function, and pharmacological inhibitors were used to modulate platelet microaggregation in the presence/absence of silica (10 nm and 50 nm) and polystyrene (23 nm) NPs. Light aggregometry was used to study platelet aggregation in macroscale. Optical, immunofluorescence, and scanning electron microscopy were also used to visualize platelet aggregates. RESULTS: Platelet microaggregation was enhanced by thrombin receptor-activating peptide, whereas prostacyclin, nitric oxide donors, acetylsalicylic acid, and phenanthroline, but not adenosine diphosphate (ADP) blockers, were able to inhibit platelet microaggregation. NPs caused platelet microaggregation, an effect not detectable by light aggregometry. NP-induced microaggregation was attenuated by platelet inhibitors. CONCLUSION: NP-induced platelet microaggregation appears to involve classical proaggregatory pathways (thromboxane A2-mediated and matrix metalloproteinase-2-mediated) and can be regulated by endogenous (prostacyclin) and pharmacological (acetylsalicylic acid, phenanthroline, and nitric oxide donors) inhibitors of platelet function. Quartz crystal microbalance with dissipation, but not light aggregometry, is an appropriate method for studying NP-induced microaggregation.


Assuntos
Plaquetas , Coagulantes , Nanopartículas/química , Agregação Plaquetária/efeitos dos fármacos , Técnicas de Microbalança de Cristal de Quartzo/métodos , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Células Cultivadas , Coagulantes/química , Coagulantes/farmacologia , Humanos
8.
Int J Nanomedicine ; 10: 2723-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897218

RESUMO

New nanomaterials intended for systemic administration have raised concerns regarding their biocompatibility and hemocompatibility. Quantum dots (QD) nanoparticles have been used for diagnostics, and recent work suggests their use for in vivo molecular and cellular imaging. However, the hemocompatibility of QDs and their constituent components has not been fully elucidated. In the present study, comprehensive investigation of QD-platelet interactions is presented. These interactions were shown using transmission electron microscopy. The effects of QDs on platelet function were investigated using light aggregometry, quartz crystal microbalance with dissipation, flow cytometry, and gelatin zymography. Platelet morphology was also analyzed by phase-contrast, immunofluorescence, atomic-force and transmission electron microscopy. We show that the QDs bind to platelet plasma membrane with the resultant upregulation of glycoprotein IIb/IIIa and P-selectin receptors, and release of matrix metalloproteinase-2. These findings unravel for the first time the mechanism of functional response of platelets to ultrasmall QDs in vitro.


Assuntos
Plaquetas/efeitos dos fármacos , Compostos de Cádmio/farmacologia , Nanoestruturas/química , Pontos Quânticos , Telúrio/farmacologia , Compostos de Cádmio/química , Membrana Celular/metabolismo , Citometria de Fluxo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Selectina-P/metabolismo , Ativação Plaquetária , Quartzo , Técnicas de Microbalança de Cristal de Quartzo , Telúrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA