Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chromosoma ; 122(3): 221-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23519820

RESUMO

Engineered minichromosomes provide efficient platforms for stacking transgenes in crop plants. Methods for modifying these chromosomes in vivo are essential for the development of customizable systems for the removal of selection genes or other sequences and for the addition of new genes. Previous studies have demonstrated that Cre, a site-specific recombinase, could be used to modify lox sites on transgenes on maize minichromosomes; however, these studies demonstrated somatic recombination only, and modified minichromosomes could not be recovered. We describe the recovery of an engineered chromosome composed of little more than a centromere plus transgene that was derived by telomere-mediated truncation. We used the fiber fluorescence in situ hybridization technique and detected a transgene on the minichromosome inserted among stretches of CentC centromere repeats, and this insertion was large enough to suggest a tandem insertion. By crossing the minichromosome to a plant expressing Cre-recombinase, the Bar selection gene was removed, leaving behind a single loxP site. This study demonstrates that engineered chromosomes can be modified in vivo using site-specific recombinases, a demonstration essential to the development of amendable chromosome platforms in plants.


Assuntos
Cromossomos de Plantas/genética , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Cromossomos de Plantas/metabolismo , Engenharia Genética/métodos , Hibridização in Situ Fluorescente , Integrases/genética , Integrases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo
2.
Mol Plant Pathol ; 24(7): 742-757, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929631

RESUMO

Plant pathogens cause significant crop loss worldwide, and new resistance genes deployed to combat diseases can be overcome quickly. Understanding the existing resistance gene diversity within the germplasm of major crops, such as maize, is crucial for the development of new disease-resistant varieties. We analysed the nucleotide-binding leucine-rich repeat receptors (NLRs) of 26 recently sequenced diverse founder lines from the maize nested association mapping (NAM) population and compared them to the R gene complement present in a wild relative of maize, Zea luxurians. We found that NLRs in both species contain a large diversity of atypical integrated domains, including many domains that have not previously been found in the NLRs of other species. Additionally, the single Z. luxurians genome was found to have greater integrated atypical domain diversity than all 26 NAM founder lines combined, indicating that this species may represent a rich source of novel resistance genes. NLRs were also found to have very high sequence diversity and presence-absence variation among the NAM founder lines, with a large NLR cluster on Chr10 representing a diversity hotspot. Additionally, NLRs were shown to be mobile within maize genomes, with several putative interchromosomal translocations identified.


Assuntos
Plantas , Zea mays , Zea mays/genética
3.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
4.
Proc Natl Acad Sci U S A ; 106(6): 2071-6, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19164767

RESUMO

Comparative genomics is a powerful tool to decipher gene and genome evolution. Placing multiple genome comparisons in a phylogenetic context improves the sensitivity of evolutionary inferences. In the genus Oryza, this comparative approach can be used to investigate gene function, genome evolution, domestication, polyploidy, and ecological adaptation. A large genomic region surrounding the MONOCULM1 (MOC1) locus was chosen for study in 14 Oryza species, including 10 diploids and 4 allotetraploids. Sequencing and annotation of 18 bacterial artificial chromosome clones for these species revealed highly conserved gene colinearity and structure in the MOC1 region. Since the Oryza radiation about 14 Mya, differences in transposon amplification appear to be responsible for the different current sizes of the Oryza genomes. In the MOC1 region, transposons were only conserved between genomes of the same type (e.g., AA or BB). In addition to the conserved gene content, several apparent genes have been generated de novo or uniquely retained in the AA lineage. Two different 3-gene segments have been inserted into the MOC1 region of O. coarctata (KK) or O. sativa by unknown mechanism(s). Large and apparently noncoding sequences flanking the MOC1 gene were observed to be under strong purifying selection. The allotetraploids Oryza alta and Oryza minuta were found to be products of recent polyploidization, less than 1.6 and 0.4 Mya, respectively. In allotetraploids, pseudogenization of duplicated genes was common, caused by large deletions, small frame-shifting insertions/deletions, or nonsense mutations.


Assuntos
Genoma de Planta/genética , Proteínas Nucleares/genética , Oryza/genética , Sequência de Bases , Genes de Plantas/genética , Dados de Sequência Molecular , Mutação , Ploidias , Análise de Sequência de DNA
5.
Plant J ; 63(3): 430-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20487382

RESUMO

Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct 'genome types' (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1-Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio-temporal dynamics of genome organization and evolution of this region in 'natural' polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage-specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.


Assuntos
Evolução Molecular , Genoma de Planta , Oryza/genética , Tetraploidia , Cromossomos Artificiais Bacterianos , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Retroelementos
6.
Mol Biol Evol ; 27(11): 2487-506, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20522726

RESUMO

Heading date is one of the most important quantitative traits responsible for the domestication of rice. We compared a 155-kb reference segment of the Oryza sativa ssp. japonica cv. Nipponbare genome surrounding Hd1, a major heading date gene in rice, with orthologous regions from nine diploid Oryza species that diverged over a relatively short time frame (∼16 My) to study sequence evolution around a domestication locus. The orthologous Hd1 region from Sorghum bicolor was included to compare and contrast the evolution in a more distant relative of rice. Consistent with other observations at the adh1/adh2, monoculm1, and sh2/a1 loci in grass species, we found high gene colinearity in the Hd1 region amidst size differences that were lineage specific and long terminal repeat retrotransposon driven. Unexpectedly, the Hd1 gene was deleted in O. glaberrima, whereas the O. rufipogon and O. punctata copies had degenerative mutations, suggesting that other heading date loci might compensate for the loss or nonfunctionality of Hd1 in these species. Compared with the japonica Hd1 region, the orthologous region in sorghum exhibited micro-rearrangements including gene translocations, seven additional genes, and a gene triplication and truncation event predating the divergence from Oryza.


Assuntos
Diploide , Genes de Plantas/genética , Oryza/genética , Homologia de Sequência do Ácido Nucleico , Sorghum/genética , Sintenia/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais de Bacteriófago P1/genética , Sequência Consenso/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Bases de Dados de Ácidos Nucleicos , Loci Gênicos/genética , Especiação Genética , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Sequências Repetidas Terminais/genética , Fatores de Tempo
7.
Nat Commun ; 9(1): 4844, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451840

RESUMO

Long-read sequencing technologies have greatly facilitated assemblies of large eukaryotic genomes. In this paper, Oxford Nanopore sequences generated on a MinION sequencer are combined with Bionano Genomics Direct Label and Stain (DLS) optical maps to generate a chromosome-scale de novo assembly of the repeat-rich Sorghum bicolor Tx430 genome. The final assembly consists of 29 scaffolds, encompassing in most cases entire chromosome arms. It has a scaffold N50 of 33.28 Mbps and covers 90% of the expected genome length. A sequence accuracy of 99.85% is obtained after aligning the assembly against Illumina Tx430 data and 99.6% of the 34,211 public gene models align to the assembly. Comparisons of Tx430 and BTx623 DLS maps against the public BTx623 v3.0.1 genome assembly suggest substantial discrepancies whose origin remains to be determined. In summary, this study demonstrates that informative assemblies of complex plant genomes can be generated by combining nanopore sequencing with DLS optical maps.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Mapeamento Físico do Cromossomo/métodos , Sorghum/genética , Tamanho do Genoma , Repetições de Microssatélites , Nanoporos , Coloração e Rotulagem/métodos
8.
BMC Genomics ; 7: 199, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16895597

RESUMO

BACKGROUND: With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8-10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40-50 million years ago. RESULTS: Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. CONCLUSION: The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Sondas de DNA , Marcadores Genéticos , Genoma de Planta , Hibridização de Ácido Nucleico , Oryza/genética , Sorghum/genética , Cromossomos Artificiais Bacterianos/genética , Impressões Digitais de DNA , Evolução Molecular , Biblioteca Gênica , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
9.
J Genet Genomics ; 38(8): 327-32, 2011 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-21867958

RESUMO

A set of proteins and noncoding RNAs, referred to as the male specific lethal (MSL) complex, is present on the male X chromosome in Drosophila and has been postulated to be responsible for dosage compensation of this chromosome - the up-regulation of its expression to be equal to that of two X chromosomes in females. This hypothesis is evaluated in view of lesser known aspects of dosage compensation such as the fact that metafemales with three X chromosomes also have equal expression to normal females, which would require a down-regulation of each gene copy. Moreover, when this complex is ectopically expressed in females or specifically targeted to a reporter in males, there is no increase in expression of the genes or targets with which it is associated. These observations are not consistent with the hypothesis that the MSL complex conditions dosage compensation. A synthesis is described that can account for these observations.


Assuntos
Mecanismo Genético de Compensação de Dose , Drosophila/genética , Genes Letais/genética , RNA não Traduzido/genética , Cromossomo X/genética , Aneuploidia , Animais , Drosophila/metabolismo , Feminino , Dosagem de Genes/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Modelos Genéticos
10.
Plant Cell ; 20(12): 3191-209, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19098269

RESUMO

Oryza (23 species; 10 genome types) contains the world's most important food crop - rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past approximately 15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Genômica/métodos , Oryza/genética , Dados de Sequência Molecular , Oryza/classificação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
11.
Mol Genet Genomics ; 275(1): 26-34, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16341708

RESUMO

Mechanisms of genome evolution are poorly understood although recent genome sequencing is providing the tools to begin to illuminate such mechanisms. Using high-resolution molecular cytogenetic tools, we examined the structural evolution of 790 kb surrounding the evolutionarily important FLC locus of Arabidopsis thaliana in three of its relatives, Arabidopsis halleri, Arabidopsis neglecta and Arabidopsis arenosa. Sequenced BACs from A. thaliana were used as heterologous probes across these species and genome expansion was found in all three species relative to A. thaliana, ranging from 16 to 27%. Expansion was seen along the length of the entire region but molecular analyses revealed no characteristic pattern of either intra- or intergenic expansion among these species. Mapping of BACs on DNA fibers from A. thaliana revealed one possible error, approximately 14 kb missing from the reported sequence, indicating that for comparative studies it is important to confirm the reference sequence to which comparison will be made.


Assuntos
Arabidopsis/genética , Evolução Molecular , Genoma de Planta , Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Especificidade da Espécie
12.
Genome Res ; 16(10): 1262-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963705

RESUMO

Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a "copy and paste" mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus.


Assuntos
Mapeamento Cromossômico , Duplicação Gênica , Genoma de Planta/genética , Oryza/genética , Filogenia , Retroelementos/genética , Sequência de Bases , Southern Blotting , Cromossomos Artificiais Bacterianos , Análise por Conglomerados , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA