Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436559

RESUMO

A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.


Assuntos
MicroRNAs , Consenso , Bases de Dados Factuais , MicroRNAs/genética , Razão de Chances , RNA-Seq
2.
Mol Cell ; 68(4): 715-730.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29129638

RESUMO

The spindle assembly checkpoint (SAC) generates a diffusible protein complex that prevents anaphase until all chromosomes are properly attached to spindle microtubules. A key step in SAC initiation is the recruitment of MAD1 to kinetochores, which is generally thought to be governed by the microtubule-kinetochore (MT-KT) attachment status. However, we demonstrate that the recruitment of MAD1 via BUB1, a conserved kinetochore receptor, is not affected by MT-KT interactions in human cells. Instead, BUB1:MAD1 interaction depends on BUB1 phosphorylation, which is controlled by a biochemical timer that integrates counteracting kinase and phosphatase effects on BUB1 into a pulse-generating incoherent feedforward loop. We propose that this attachment-independent timer serves to rapidly activate the SAC at mitotic entry, before the attachment-sensing MAD1 receptors have become fully operational. The BUB1-centered timer is largely impervious to conventional anti-mitotic drugs, and it is, therefore, a promising therapeutic target to induce cell death through permanent SAC activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/genética
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673747

RESUMO

Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.


Assuntos
Astrócitos , Reposicionamento de Medicamentos , Epilepsia , Microglia , Doenças Neuroinflamatórias , Humanos , Epilepsia/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia
4.
Neurobiol Dis ; 176: 105964, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526090

RESUMO

Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Interleucina-6 , Doença de Lafora/genética , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
5.
Mol Cell ; 57(2): 261-72, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25544560

RESUMO

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.


Assuntos
Glicogênio/metabolismo , Doença de Lafora/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oligossacarídeos/química , Fosfatos/química , Fosforilação , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases não Receptoras/fisiologia
6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046993

RESUMO

Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD. However, despite the efforts made by different groups, the question of why PGBs accumulate in the brain is still unanswered. We have recently demonstrated that, in vivo, astrocytes accumulate most of the PGBs present in the brain, and this could lead to astrocyte dysfunction. To develop a deeper understanding of the defects present in LD astrocytes that lead to LD pathophysiology, we obtained pure primary cultures of astrocytes from LD mice from the postnatal stage under conditions that accumulate PGBs, the hallmark of LD. These cells serve as novel in vitro models for studying PGBs accumulation and related LD dysfunctions. In this sense, the metabolomics of LD astrocytes indicate that they accumulate metabolic intermediates of the upper part of the glycolytic pathway, probably as a consequence of enhanced glucose uptake. In addition, we also demonstrate the feasibility of using the model in the identification of different compounds that may reduce the accumulation of polyglucosan inclusions.


Assuntos
Doença de Lafora , Camundongos , Animais , Doença de Lafora/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Glucanos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674605

RESUMO

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Assuntos
Doença de Lafora , MicroRNAs , Camundongos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Oxidativo/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Glia ; 69(5): 1170-1183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368637

RESUMO

Lafora disease (LD) is a fatal rare type of progressive myoclonus epilepsy that appears during early adolescence. The disease is caused by mutations in EPM2A or EPM2B genes, which encode laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase, respectively. Although the exact roles of laforin and malin are still not well understood, it is known that they work as a complex in which laforin recruits targets that will be ubiquitinated by malin. Recently, we suggested that the type of epilepsy that accompanies LD could be due to deficiencies in the function of the astrocytic glutamate transporter GLT-1. We described that astrocytes from LD mouse models presented decreased levels of GLT-1 at the plasma membrane, leading to increased levels of glutamate in the brain parenchyma. In this work, we present evidence indicating that in the absence of a functional laforin/malin complex (as in LD cellular models) there is an alteration in the ubiquitination of GLT-1, which could be the cause of the reduction in the levels of GLT-1 at the plasma membrane. On the contrary, overexpression of the laforin/malin complex promotes the retention of GLT-1 at the plasma membrane. This retention may be due to the direct ubiquitination of GLT-1 and/or to an opposite effect of this complex on the dynamics of the Nedd4.2-mediated endocytosis of the transporter. This work, therefore, presents new pieces of evidence on the regulation of GLT-1 by the laforin/malin complex, highlighting its value as a therapeutic target for the amelioration of the type of epilepsy that accompanies LD.


Assuntos
Doença de Lafora , Sistema X-AG de Transporte de Aminoácidos , Animais , Endocitose , Doença de Lafora/genética , Camundongos , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ubiquitinação
9.
EMBO J ; 36(13): 1946-1962, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28515121

RESUMO

Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs showed a Warburg-like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non-limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1-/- phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1-/- MuSC self-renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Autorrenovação Celular , Homeostase , L-Lactato Desidrogenase/metabolismo , Músculos/citologia , Células-Tronco/metabolismo , Animais , Glicólise , Camundongos , Camundongos Knockout
10.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069559

RESUMO

Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Metformina/uso terapêutico , Animais , Sistema Nervoso Central/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Doença de Lafora/tratamento farmacológico , Metformina/metabolismo , Metformina/farmacologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia
11.
Hum Mol Genet ; 27(7): 1290-1300, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408991

RESUMO

Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy characterized by the accumulation of insoluble poorly branched glycogen-like inclusions named Lafora bodies (LBs) in the brain and peripheral tissues. In the brain, since its first discovery in 1911, it was assumed that these glycogen inclusions were only present in affected neurons. Mouse models of LD have been obtained recently, and we and others have been able to report the accumulation of glycogen inclusions in the brain of LD animals, what recapitulates the hallmark of the disease. In this work we present evidence indicating that, although in mouse models of LD glycogen inclusions co-localize with neurons, as originally established, most of them co-localize with astrocytic markers such as glial fibrillary acidic protein (GFAP) and glutamine synthase. In addition, we have observed that primary cultures of astrocytes from LD mouse models accumulate higher levels of glycogen than controls. These results suggest that astrocytes may play a crucial role in the pathophysiology of Lafora disease, as the accumulation of glycogen inclusions in these cells may affect their regular functionality leading them to a possible neuronal dysfunction.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glicogênio/metabolismo , Doença de Lafora/metabolismo , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Glutamato-Amônia Ligase/genética , Glicogênio/genética , Humanos , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Camundongos Knockout
12.
Expert Rev Mol Med ; 22: e4, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32938505

RESUMO

Progressive myoclonus epilepsies (PMEs) are a group of genetic neurological disorders characterised by the occurrence of epileptic seizures, myoclonus and progressive neurological deterioration including cerebellar involvement and dementia. The primary cause of PMEs is variable and alterations in the corresponding mutated genes determine the progression and severity of the disease. In most cases, they lead to the death of the patient after a period of prolonged disability. PMEs also share poor information on the pathophysiological bases and the lack of a specific treatment. Recent reports suggest that neuroinflammation is a common trait under all these conditions. Here, we review similarities and differences in neuroinflammatory response in several PMEs and discuss the window of opportunity of using anti-inflammatory drugs in the treatment of several of these conditions.


Assuntos
Inflamação , Epilepsias Mioclônicas Progressivas/fisiopatologia , Humanos , Mutação , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia
13.
Epilepsy Behav ; 103(Pt A): 106839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932179

RESUMO

Lafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study.


Assuntos
Congressos como Assunto/tendências , Educação/tendências , Internacionalidade , Doença de Lafora/terapia , Animais , Humanos , Doença de Lafora/epidemiologia , Doença de Lafora/genética , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Espanha/epidemiologia
14.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521797

RESUMO

Neuroinflammation and epilepsy are interconnected. Brain inflammation promotes neuronal hyper-excitability and seizures, and dysregulation in the glia immune-inflammatory function is a common factor that predisposes or contributes to the generation of seizures. At the same time, acute seizures upregulate the production of pro-inflammatory cytokines in microglia and astrocytes, triggering a downstream cascade of inflammatory mediators. Therefore, epileptic seizures and inflammatory mediators form a vicious positive feedback loop, reinforcing each other. In this work, we have reviewed the main glial signaling pathways involved in neuroinflammation, how they are affected in epileptic conditions, and the therapeutic opportunities they offer to prevent these disorders.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Epilepsia/etiologia , Epilepsia/metabolismo , Neuroglia/metabolismo , Transdução de Sinais , Animais , Astrócitos/metabolismo , Citocinas/metabolismo , Encefalite/complicações , Encefalite/genética , Encefalite/metabolismo , Epilepsia/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Microglia/metabolismo
15.
Sensors (Basel) ; 19(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995743

RESUMO

For current microelectronic integrated systems, the design methodology involves different steps that end up in the full system simulation by means of electrical and physical models prior to its manufacture. However, the higher the circuit complexity, the more time is required to complete these simulations, jeopardizing the convergence of the numerical methods and, hence, meaning that the reliability of the results are not guaranteed. This paper shows the use of a high-level tool based on Matlab to simulate the operation of an artificial neural network implemented in a mixed analog-digital CMOS process, intended for sensor calibration purposes. The proposed standard tool enables modification of the neural model architecture to adapt its characteristics to those of the electronic system, resulting in accurate behavioral models that predict the complete microelectronic IC system behavior under different operation conditions before its physical implementation with a simple, time-efficient, and reliable solution.

16.
Sensors (Basel) ; 19(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577468

RESUMO

This paper presents a novel structure of Resistance- to-Period (R-T) Converter highly robust to supply and temperature variations. Robustness is achieved by using the ratiometric approach so that complex circuits or high accuracy voltage references are not necessary. To prove the proposed architecture of R-T converter, a prototype was implemented in a 0.18 µ m CMOS process with a single supply voltage of 1.8 V and without any stable reference voltage. Experimental results show a maximum ±1.5% output signal variation for ±10% supply voltage variation and in a 3⁻95 ° C temperature range.

17.
Biochim Biophys Acta ; 1862(6): 1074-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26976331

RESUMO

Lafora disease (LD, OMIM 254780) is a fatal rare disorder characterized by epilepsy and neurodegeneration. Although in recent years a lot of information has been gained on the molecular basis of the neurodegeneration that accompanies LD, the molecular basis of epilepsy is poorly understood. Here, we present evidence indicating that the homeostasis of glutamate transporter GLT-1 (EAAT2) is compromised in mouse models of LD. Our results indicate that primary astrocytes from LD mice have reduced capacity of glutamate transport, probably because they present a reduction in the levels of the glutamate transporter at the plasma membrane. On the other hand, the overexpression in cellular models of laforin and malin, the two proteins related to LD, results in an accumulation of GLT-1 (EAAT2) at the plasma membrane and in a severe reduction of the ubiquitination of the transporter. All these results suggest that the laforin/malin complex slows down the endocytic recycling of the GLT-1 (EAAT2) transporter. Since, defects in the function of this transporter lead to excitotoxicity and epilepsy, we suggest that the epilepsy that accompanies LD could be due, at least in part, to deficiencies in the function of the GLT-1 (EAAT2) transporter.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Doença de Lafora/metabolismo , Animais , Astrócitos/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/análise , Fosfatases de Especificidade Dupla/metabolismo , Endocitose , Transportador 2 de Aminoácido Excitatório/análise , Homeostase , Humanos , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitinação
18.
Biochem J ; 473(7): 937-47, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831516

RESUMO

AMP-activated protein kinase (AMPK) is a metabolic stress-sensing kinase. We previously showed that glucose deprivation induces autophosphorylation of AMPKß at Thr-148, which prevents the binding of AMPK to glycogen. Furthermore, in MIN6 cells, AMPKß1 binds to R6 (PPP1R3D), a glycogen-targeting subunit of protein phosphatase type 1 (PP1), thereby regulating the glucose-induced inactivation of AMPK. In the present study, we further investigated the interaction of R6 with AMPKß and the possible dependency on Thr-148 phosphorylation status. Yeast two-hybrid (Y2H) analyses and co-immunoprecipitation (IP) of the overexpressed proteins in human embryonic kidney (HEK) 293T) cells revealed that both AMPKß1 and AMPK-ß2 wild-type (WT) isoforms bind to R6. The AMPKß-R6 interaction was stronger with the muscle-specific AMPKß2-WT and required association with the substrate-binding motif of R6. When HEK293T cells or C2C12 myotubes were cultured in high-glucose medium, AMPKß2-WT and R6 weakly interacted. In contrast, glycogen depletion significantly enhanced this protein interaction. Mutation of AMPKß2 Thr-148 prevented the interaction with R6 irrespective of the intracellular glycogen content. Treatment with the AMPK activator oligomycin enhanced the AMPKß2-R6 interaction in conjunction with increased Thr-148 phosphorylation in cells grown in low-glucose medium. These data are in accordance with R6 binding directly to AMPKß2 when both proteins detach from the diminishing glycogen particle, which is simultaneous with increased AMPKß2 Thr-148 autophosphorylation. Such a model points to a possible control of AMPK by PP1-R6 upon glycogen depletion in muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Mutação de Sentido Incorreto , Proteína Fosfatase 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Glicogênio/genética , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/genética
19.
BMC Biochem ; 16: 24, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493215

RESUMO

BACKGROUND: Lafora disease (LD, OMIM 254780) is a fatal neurodegenerative disorder produced mainly by mutations in two genes: EPM2A, encoding the dual specificity phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. Although it is known that laforin and malin may form a functional complex, the underlying molecular mechanisms of this pathology are still far from being understood. METHODS: In order to gain information about the substrates of the laforin/malin complex, we have carried out a yeast substrate-trapping screening, originally designed to identify substrates of protein tyrosine phosphatases. RESULTS: Our results identify the two muscular isoforms of pyruvate kinase (PKM1 and PKM2) as novel interaction partners of laforin. CONCLUSIONS: We present evidence indicating that the laforin/malin complex is able to interact with and ubiquitinate both PKM1 and PKM2. This post-translational modification, although it does not affect the catalytic activity of PKM1, it impairs the nuclear localization of PKM2.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Hormônios Tireóideos/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Hormônio da Tireoide
20.
Hum Mol Genet ; 21(7): 1521-33, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22186026

RESUMO

Lafora disease (LD), a fatal neurodegenerative disorder characterized by the presence of intracellular inclusions called Lafora bodies (LBs), is caused by loss-of-function mutations in laforin or malin. Previous studies suggested a role of these proteins in the regulation of glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of the intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. We have generated a malin-deficient (Epm2b-/-) mouse with a phenotype similar to that of LD patients. By 3-6 months of age, Epm2b-/- mice present neurological and behavioral abnormalities that correlate with a massive presence of LBs in the cortex, hippocampus and cerebellum. Sixteen-day-old Epm2b-/- mice, without detectable LBs, show an impairment of macroautophagy (hereafter called autophagy), which remains compromised in adult animals. These data demonstrate similarities between the Epm2a-/- and Epm2b-/- mice that provide further insights into LD pathogenesis. They illustrate that the dysfunction of autophagy is a consequence of the lack of laforin-malin complexes and a common feature of both mouse models of LD. Because this dysfunction precedes other pathological manifestations, we propose that decreased autophagy plays a primary role in the formation of LBs and it is critical in LD pathogenesis.


Assuntos
Autofagia , Doença de Lafora/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Fosfatases de Especificidade Dupla/análise , Fosfatases de Especificidade Dupla/metabolismo , Glucanos/química , Doença de Lafora/genética , Doença de Lafora/fisiopatologia , Camundongos , Camundongos Knockout , Transtornos das Habilidades Motoras/genética , Miocárdio/ultraestrutura , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina/análise , Ubiquitina-Proteína Ligases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA