Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324585

RESUMO

The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Fosforilação , Neuropilina-1/metabolismo
2.
PLoS Biol ; 19(3): e3001161, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788834

RESUMO

Scientists routinely use images to display data. Readers often examine figures first; therefore, it is important that figures are accessible to a broad audience. Many resources discuss fraudulent image manipulation and technical specifications for image acquisition; however, data on the legibility and interpretability of images are scarce. We systematically examined these factors in non-blot images published in the top 15 journals in 3 fields; plant sciences, cell biology, and physiology (n = 580 papers). Common problems included missing scale bars, misplaced or poorly marked insets, images or labels that were not accessible to colorblind readers, and insufficient explanations of colors, labels, annotations, or the species and tissue or object depicted in the image. Papers that met all good practice criteria examined for all image-based figures were uncommon (physiology 16%, cell biology 12%, plant sciences 2%). We present detailed descriptions and visual examples to help scientists avoid common pitfalls when publishing images. Our recommendations address image magnification, scale information, insets, annotation, and color and may encourage discussion about quality standards for bioimage publishing.


Assuntos
Obras Pictóricas como Assunto/tendências , Redação/normas , Pesquisa Biomédica , Comunicação , Humanos , Publicações Periódicas como Assunto , Publicações/normas , Editoração/tendências , Comunicação Acadêmica
3.
Proc Biol Sci ; 290(2013): 20230983, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38087923

RESUMO

Faculty at research institutions play a central role in advancing knowledge and careers, as well as promoting the well-being of students and colleagues in research environments. Mentorship from experienced peers has been touted as critical for enabling these myriad roles to allow faculty development, career progression, and satisfaction. However, there is little information available on who supports faculty and best ways to structure a faculty mentorship programme for early- and mid-career academics. In the interest of advocating for increased and enhanced faculty mentoring and mentoring programmes, we surveyed faculty around the world to gather data on whether and how they receive mentoring. We received responses from 457 early- and mid-career faculty and found that a substantial portion of respondents either reported having no mentor or a lack of a formal mentoring scheme. Qualitative responses on the quality of mentorship revealed that the most common complaints regarding mentorship included lack of mentor availability, unsatisfactory commitment to mentorship, and non-specific or non-actionable advice. On these suggestions, we identify a need for training for faculty mentors as well as strategies for individual mentors, departments, and institutions for funding and design of more intentional and supportive mentorship programmes for early- and mid-career faculty.


Assuntos
Tutoria , Mentores , Humanos , Mentores/educação , Docentes , Estudantes , Inquéritos e Questionários
4.
PLoS Biol ; 17(2): e3000151, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789895

RESUMO

Peer-reviewed journal publication is the main means for academic researchers in the life sciences to create a permanent public record of their work. These publications are also the de facto currency for career progress, with a strong link between journal brand recognition and perceived value. The current peer-review process can lead to long delays between submission and publication, with cycles of rejection, revision, and resubmission causing redundant peer review. This situation creates unique challenges for early career researchers (ECRs), who rely heavily on timely publication of their work to gain recognition for their efforts. Today, ECRs face a changing academic landscape, including the increased interdisciplinarity of life sciences research, expansion of the researcher population, and consequent shifts in employer and funding demands. The publication of preprints, publicly available scientific manuscripts posted on dedicated preprint servers prior to journal-managed peer review, can play a key role in addressing these ECR challenges. Preprinting benefits include rapid dissemination of academic work, open access, establishing priority or concurrence, receiving feedback, and facilitating collaborations. Although there is a growing appreciation for and adoption of preprints, a minority of all articles in life sciences and medicine are preprinted. The current low rate of preprint submissions in life sciences and ECR concerns regarding preprinting need to be addressed. We provide a perspective from an interdisciplinary group of ECRs on the value of preprints and advocate their wide adoption to advance knowledge and facilitate career development.


Assuntos
Revisão da Pesquisa por Pares/métodos , Pré-Publicações como Assunto , Pesquisadores/psicologia , Pesquisa Biomédica , Mobilidade Ocupacional , Humanos , Publicações Periódicas como Assunto
5.
J Pathol ; 247(2): 155-157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30357843

RESUMO

Many cellular signaling pathways are initiated by cell-surface ligand-sensing complexes that incorporate not just one but multiple receptors. Most studies focus on receptors coexpressed on a single cell (cis interactions), but complexes containing receptors on adjacent cells (trans interactions) are also possible. Recent work by Morin et al published in this journal provides critical evidence for such trans interactions between Neuropilin-1 (NRP1) expressed on human tumor cells and vascular endothelial growth factor receptor 2 (VEGFR2) expressed on adjacent endothelial cells, with the ligand VEGFA binding and bridging the two receptors. They show that the formation of these complexes is correlated with reduced tumor proliferation and increased patient survival. They also observe trans NRP1-VEGFA-VEGFR2 repressing angiogenesis and cis NRP1-VEGFA-VEGFR2 increasing angiogenesis in selected cancers. The distinct molecular signature of each tumor and each patient will determine which type of complexes dominate and will influence prognosis and treatment. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neuropilina-1 , Neoplasias Pancreáticas , Células Endoteliais , Humanos , Reino Unido , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
6.
Nature ; 560(7720): 553, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30158619

Assuntos
Editoração , Ciência
7.
J Biol Chem ; 292(4): 1288-1301, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27927983

RESUMO

The activity of receptor tyrosine kinases (RTKs) is controlled through their lateral association in the plasma membrane. RTKs are believed to form both homodimers and heterodimers, and the different dimers are believed to play unique roles in cell signaling. However, RTK heterodimers remain poorly characterized, as compared with homodimers, because of limitations in current experimental methods. Here, we develop a FRET-based methodology to assess the thermodynamics of hetero-interactions in the plasma membrane. To demonstrate the utility of the methodology, we use it to study the hetero-interactions between three fibroblast growth factor receptors-FGFR1, FGFR2, and FGFR3-in the absence of ligand. Our results show that all possible FGFR heterodimers form, suggesting that the biological roles of FGFR heterodimers may be as significant as the homodimer roles. We further investigate the effect of two pathogenic point mutations in FGFR3 (A391E and G380R) on heterodimerization. We show that each of these mutations stabilize most of the heterodimers, with the largest effects observed for FGFR3 wild-type/mutant heterodimers. We thus demonstrate that the methodology presented here can yield new knowledge about RTK interactions and can further our understanding of signal transduction across the plasma membrane.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Multimerização Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Células CHO , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Humanos , Mutação de Sentido Incorreto , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
8.
Biochemistry ; 56(25): 3159-3173, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28621531

RESUMO

Receptor tyrosine kinase (RTK) signal transduction is essential in human skeletal, nervous, and vascular development, in homeostasis, and in disease. RTKs are activated by dimerization in the plasma membrane. The mechanisms of receptor dimerization and activation are multifaceted and complex, and unraveling them remains challenging. Most studies of RTKs have been devoted to crystallographic analysis of their isolated extracellular domain and biochemical analysis of the catalytic domain. However, the past few years have seen direct biophysical studies of (intact) RTK dimerization in native membranes lead to significant progress in our fundamental understanding of the mechanisms of their signal transduction across the plasma membrane. This perspective focuses on recent insights into the mechanisms of fibroblast growth factor receptor and vascular endothelial growth factor receptor transmembrane signaling, derived from studies of wild-type and mutant RTKs in a number of environments, including plasma membrane-derived vesicles. These insights reveal distinct steps in and factors of RTK signaling across the plasma membrane that can guide the drug discovery process for RTK targeting therapeutics.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Transdução de Sinais
9.
Biochim Biophys Acta ; 1858(7 Pt A): 1436-42, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27040652

RESUMO

The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative FÓ§ster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations.


Assuntos
Membrana Celular/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Acondroplasia/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CHO , Membrana Celular/química , Membrana Celular/metabolismo , Cricetulus , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica , Genes Reporter , Humanos , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Osmose , Ligação Proteica , Multimerização Proteica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteína Vermelha Fluorescente
11.
Biochim Biophys Acta ; 1848(7): 1591-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896659

RESUMO

Plasma membrane-derived vesicles are being used in biophysical and biochemical research as a simple, yet native-like model of the cellular membrane. Here we report on the characterization of vesicles produced via two different vesiculation methods from CHO and A431 cell lines. The first method is a recently developed method which utilizes chloride salts to induce osmotic vesiculation. The second is a well established chemical vesiculation method which uses DTT and formaldehyde. We show that both vesiculation methods produce vesicles which contain the lipid species previously reported in the plasma membrane of these cell lines. The two methods lead to small but statistically significant differences in two lipid species only; phosphatidylcholine (PC) and plasmalogen phosphatidylethanolamine (PEp). However, highly significant differences were observed in the degree of incorporation of a membrane receptor and in the degree of retention of soluble cytosolic proteins within the vesicles.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Western Blotting , Células CHO , Linhagem Celular Tumoral , Membrana Celular/química , Colesterol/metabolismo , Cromatografia Líquida , Cricetinae , Cricetulus , Ditiotreitol/farmacologia , Receptores ErbB/metabolismo , Formaldeído/farmacologia , Humanos , Espectrometria de Massas , Microscopia Confocal , Pressão Osmótica , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/efeitos dos fármacos
12.
Acc Chem Res ; 48(8): 2262-9, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26244699

RESUMO

Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.


Assuntos
Membrana Celular/química , Transferência Ressonante de Energia de Fluorescência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Acantose Nigricans/etiologia , Acantose Nigricans/genética , Membrana Celular/metabolismo , Disostose Craniofacial/etiologia , Disostose Craniofacial/genética , Dimerização , Humanos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Displasia Tanatofórica/etiologia , Displasia Tanatofórica/genética , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
13.
Biophys J ; 106(6): 1309-17, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24655506

RESUMO

Förster resonance energy transfer (FRET) experiments are often used to study interactions between integral membrane proteins in cellular membranes. However, in addition to the FRET of sequence-specific interactions, these experiments invariably record a contribution due to proximity FRET, which occurs when a donor and an acceptor approach each other by chance within distances of ∼100 Å. This effect does not reflect specific interactions in the membrane and is frequently unappreciated, despite the fact that its magnitude can be significant. Here we develop a computational description of proximity FRET, simulating the cases of proximity FRET when fluorescent proteins are used to tag monomeric, dimeric, trimeric, and tetrameric membrane proteins, as well as membrane proteins existing in monomer-dimer equilibria. We also perform rigorous experimental measurements of this effect, by identifying membrane receptors that do not associate in mammalian membranes. We measure the FRET efficiencies between yellow fluorescent protein and mCherry-tagged versions of these receptors in plasma-membrane-derived vesicles as a function of receptor concentration. Finally, we demonstrate that the experimental measurements are well described by our predictions. The work presented here brings additional rigor to FRET-based studies of membrane protein interactions, and should have broad utility in membrane biophysics research.


Assuntos
Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Receptor ErbB-2/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Células CHO , Simulação por Computador , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Multimerização Proteica , Receptor ErbB-2/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
14.
Biochim Biophys Acta ; 1828(8): 1829-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23562404

RESUMO

Membrane protein interactions, which underlie biological function, take place in the complex cellular membrane environment. Plasma membrane derived vesicles are a model system which allows the interactions between membrane proteins to be studied without the need for their extraction, purification, and reconstitution into lipid bilayers. Plasma membrane vesicles can be produced from different cell lines and by different methods, providing a rich variety of native-like model systems. With these choices, however, questions arise as to how the different types of vesicle preparations affect the interactions between membrane proteins. Here we address this question using the glycophorin A transmembrane domain (GpA) as a model system. We compare the dimerization of GpA in six different vesicle preparations derived from Chinese hamster ovary (CHO), Human Embryonic Kidney 293T (HEK 293T) and A431 cells. We accomplish this with the use of a FRET-based method which yields the FRET efficiency, the donor concentration, and the acceptor concentration in each vesicle. We show that the vesicle preparation protocol has no statistically significant effect on GpA dimerization. Based on these results, we propose that any of the six plasma membrane preparations investigated here can be used as a model system for studies of membrane protein interactions.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Membrana Celular/metabolismo , Glicoforinas/química , Rim/metabolismo , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Células Cultivadas , Cricetinae , Transferência Ressonante de Energia de Fluorescência , Glicoforinas/metabolismo , Humanos , Rim/citologia , Multimerização Proteica , Estrutura Terciária de Proteína
15.
Anal Biochem ; 449: 155-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24378720

RESUMO

Here we introduce a fast, cost-effective, and highly efficient method for production of soluble fluorescent proteins from bacteria. The method does not require optimization and does not use isopropyl ß-d-1-thiogalactopyranoside (IPTG) induction. The method relies on uninduced expression in the BL21-Gold (DE3) strain of Escherichia coli and yields large amounts (up to 0.4 µmol) of fluorescent protein from a 250-ml culture. This method is much simpler than published methods and can be used to produce any fluorescent protein that is needed in biomedical research.


Assuntos
Escherichia coli/genética , Proteínas Luminescentes/genética , Expressão Gênica , Proteínas Recombinantes/genética
16.
Biophys J ; 105(1): 165-71, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823235

RESUMO

Isolated receptor tyrosine kinase transmembrane (TM) domains have been shown to form sequence-specific dimers in membranes. Yet, it is not clear whether studies of isolated TM domains yield knowledge that is relevant to full-length receptors or whether the large glycosylated extracellular domains alter the interactions between the TM helices. Here, we address this question by quantifying the effect of the pathogenic A391E TM domain mutation on the stability of the fibroblast growth factor receptor 3 dimer in the presence of the extracellular domain and comparing these results to the case of the isolated TM fibroblast growth factor receptor 3 domains. We perform the measurements in plasma membrane-derived vesicles using a Förster-resonance-energy-transfer-based method. The effect of the mutation on dimer stability in both cases is the same (∼-1.5 kcal/mol), suggesting that the interactions observed in simple TM-peptide model systems are relevant in a biological context.


Assuntos
Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
18.
FEBS J ; 289(2): 298-307, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33665964

RESUMO

Writing recommendation letters on behalf of students and other early-career researchers is an important mentoring task within academia. An effective recommendation letter describes key candidate qualities such as academic achievements, extracurricular activities, outstanding personality traits, participation in and dedication to a particular discipline, and the mentor's confidence in the candidate's abilities. In this Words of Advice, we provide guidance to researchers on composing constructive and supportive recommendation letters, including tips for structuring and providing specific and effective examples, while maintaining a balance in language and avoiding potential biases.


Assuntos
Tutoria/normas , Mentores/psicologia , Pesquisadores/normas , Humanos , Pesquisadores/educação , Redação
19.
FEBS J ; 289(6): 1374-1384, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33818917

RESUMO

Mentorship is experience and/or knowledge-based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well-being and career development. Positive mentee-mentor relationships are vital for maintaining work-life balance and success in careers. Early-career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors.


Assuntos
Mentores , Pesquisadores , Humanos
20.
FEBS J ; 288(17): 5122-5129, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185437

RESUMO

The SARS-CoV-2 pandemic has significantly impacted global health. Research on viral mechanisms, highly effective vaccines, and other therapies is in progress. Neuropilins have recently been identified as host cell receptors enabling viral fusion. Here, we provide context to neuropilin's tissue-specific role in infection and the potential impact of NRP-based therapeutics. We conclude that the central roles of neuropilins in vascular, neural, and other pathways may render it a less suitable target for treating SARS-CoV-2 than agents that target its binding partner, the viral spike protein.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Neuropilinas/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Humanos , Neuropilinas/imunologia , Pandemias , SARS-CoV-2/patogenicidade , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA