RESUMO
A diode-pumped, air-cooled, all-fiber, quasi-continuous-wave thulium laser at an operating wavelength of 1.94 µm has been designed to study the performance of the laser parameter on the rate of fragmentation and its dependence on stone composition, fragmented particle size, as well as the retropulsion effect. The optimized laser cavity with an active fiber core/cladding diameter of 10/130 µm under a counter-propagating pump provides a stable laser power of 30 W at a slope efficiency of 50% and wall plug efficiency of 17%. The rate of fragmentation along with the retropulsion effect has been studied with human calcium oxalate monohydrate (COM) urinary stones (N=36) of different composition by using the designed laser and 200-µm-core low OH silica delivery fiber. The thulium fiber laser setting of 2.7 J pulse energy at the pulse rate of 10 Hz, pulse width of 90 ms, and peak power of 30 W is successful in breaking human COM stones in a controlled manner at a fragmentation rate of 0.8±0.4 mg/s, with almost uniform fragments of particle size less than 1.6 mm. During the stone fragmentation, the stone displacement (retropulsion effect) is less than 15 mm, even for the fragmented stone mass of 15±5 mg.
RESUMO
Foot ulcers are serious complications of diabetes mellitus (DM) and are known to be resistant to conventional treatment. This study was conducted to evaluate the efficacy of low-level laser therapy (LLLT) for the treatment of diabetic foot ulcers in a tertiary care centre (Department of Surgery, Mahatma Gandhi Memorial Medical College and Maharaja Yashwantrao Hospital, A.B. Road, Indore). A total of 30 patients with type 2 DM having Meggitt-Wagner grade I foot ulcers of more than 6 weeks duration with negative culture were studied. Patients were randomized into two groups of 15 each. Patients in study group received LLLT (660 ± 20 nm, 3 J/cm2) along with conventional therapy and those in control group were treated with conventional therapy alone. The primary outcome measure was the absolute and relative wound size reduction at 2 weeks compared to the baseline parameter. Percentage ulcer area reduction was 37 ± 9% in the LLLT group and 15 ± 5.4% in the control group (p < 0.001). For â¼75% of wounds of the treatment group, wound area reduction of 30-50% was observed. In contrast, for the control group, â¼80% of wounds showed a wound area reduction of <20% on day 15. Further, the wounds with initial wound area 1000-2000 mm2 seems to have better final outcome than the groups with larger areas. The treated groups showed higher amount of granulation than the control group. The results suggest that LLLT is beneficial as an adjunct to conventional therapy in the treatment of diabetic foot ulcers.
Assuntos
Pé Diabético/radioterapia , Terapia com Luz de Baixa Intensidade , Adulto , Idoso , Glicemia/metabolismo , Estudos de Casos e Controles , Demografia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/radioterapia , Pé Diabético/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cicatrização/efeitos da radiaçãoRESUMO
Pediatric nephrolithiasis (NL) or Kidney stone disease (KSD) is an untethered topic in Asian population. In Western countries, the annual incidence of paediatric NL is around 6-10%. Here, we present data from West Bengal, India, on lower age (LA, 0-20 years) NL and its prevalence for the first time. To discover the mutations associated with KSD, twenty-four (18 + 6) rare LA-NL patients were selected for Whole Exome Sequencing (WES) and Sanger sequencing, respectively. It was found that GRHPR c. 494G>A mutation (MZ826703) is predominant in our study cohort. This specific homozygous mutation is functionally studied for the first time directly from human peripheral mononuclear cell (PBMC) samples. Using expression study with biochemical activity and computational analysis we assumed that the mutation is pathogenic with loss of function. Moreover, three genes, AGXT, HOGA1 and GRHPR with Novel variants known to cause hyperoxaluria were found frequently in the study cohort. Our study analyses the genes and variations that cause LA-NL, as well as the molecular function of the GRHPR mutation, which may serve as a clinical marker in the population of West Bengal, Eastern India.