Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(7): 1275-1287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811857

RESUMO

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.


Assuntos
Neurônios , Optogenética , Optogenética/métodos , Animais , Neurônios/fisiologia , Neurônios/metabolismo , Transmissão Sináptica , Opsinas/genética , Opsinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos , Humanos , Sinapses/fisiologia , Sinapses/metabolismo
2.
J Neuroinflammation ; 17(1): 149, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375811

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, and demyelinating disease of the central nervous system (CNS). Several cytokines are thought to be involved in the regulation of MS pathogenesis. We recently identified interleukin (IL)-9 as a cytokine reducing inflammation and protecting from neurodegeneration in relapsing-remitting MS patients. However, the expression of IL-9 in CNS, and the mechanisms underlying the effect of IL-9 on CNS infiltrating immune cells have never been investigated. METHODS: To address this question, we first analyzed the expression levels of IL-9 in post-mortem cerebrospinal fluid of MS patients and the in situ expression of IL-9 in post-mortem MS brain samples by immunohistochemistry. A complementary investigation focused on identifying which immune cells express IL-9 receptor (IL-9R) by flow cytometry, western blot, and immunohistochemistry. Finally, we explored the effect of IL-9 on IL-9-responsive cells, analyzing the induced signaling pathways and functional properties. RESULTS: We found that macrophages, microglia, and CD4 T lymphocytes were the cells expressing the highest levels of IL-9 in the MS brain. Of the immune cells circulating in the blood, monocytes/macrophages were the most responsive to IL-9. We validated the expression of IL-9R by macrophages/microglia in post-mortem brain sections of MS patients. IL-9 induced activation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 and reduced the expression of activation markers, such as CD45, CD14, CD68, and CD11b in inflammatory macrophages stimulated in vitro with lipopolysaccharide and interferon (IFN)-γ. Similarly, in situ the number of activated CD68+ macrophages was significantly reduced in areas with high levels of IL-9. Moreover, in the same conditions, IL-9 increased the secretion of the anti-inflammatory cytokine, transforming growth factor (TGF)-ß. CONCLUSIONS: These results reveal a new cytokine expressed in the CNS, with a role in the context of MS. We have demonstrated that IL-9 and its receptor are both expressed in CNS. Moreover, we found that IL-9 decreases the activation state and promotes the anti-inflammatory properties of human macrophages. This mechanism may contribute to the beneficial effects of IL-9 that are observed in MS, and may be therapeutically potentiated by modulating IL-9 expression in MS.


Assuntos
Interleucina-9/imunologia , Interleucina-9/metabolismo , Ativação de Macrófagos/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Adulto , Idoso , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Interleucina-9/imunologia , Receptores de Interleucina-9/metabolismo
3.
J Neurosci ; 35(23): 8777-89, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063912

RESUMO

Tactile perception is obtained by coordinated motor-sensory processes. We studied the processes underlying the perception of object location in freely moving rats. We trained rats to identify the relative location of two vertical poles placed in front of them and measured at high resolution the motor and sensory variables (19 and 2 variables, respectively) associated with this whiskers-based perceptual process. We found that the rats developed stereotypic head and whisker movements to solve this task, in a manner that can be described by several distinct behavioral phases. During two of these phases, the rats' whiskers coded object position by first temporal and then angular coding schemes. We then introduced wind (in two opposite directions) and remeasured their perceptual performance and motor-sensory variables. Our rats continued to perceive object location in a consistent manner under wind perturbations while maintaining all behavioral phases and relatively constant sensory coding. Constant sensory coding was achieved by keeping one group of motor variables (the "controlled variables") constant, despite the perturbing wind, at the cost of strongly modulating another group of motor variables (the "modulated variables"). The controlled variables included coding-relevant variables, such as head azimuth and whisker velocity. These results indicate that consistent perception of location in the rat is obtained actively, via a selective control of perception-relevant motor variables.


Assuntos
Adaptação Fisiológica/fisiologia , Percepção de Distância/fisiologia , Movimentos da Cabeça/fisiologia , Percepção de Movimento/fisiologia , Percepção do Tato/fisiologia , Animais , Comportamento de Escolha/fisiologia , Aprendizagem por Discriminação/fisiologia , Feminino , Estimulação Física , Ratos , Comportamento Estereotipado , Tato , Vibrissas/inervação
4.
Anat Rec (Hoboken) ; 307(2): 442-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37644754

RESUMO

Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles. Studies have relied on muscle recording and stimulation techniques to describe the roles of individual muscles. However, these methods lack the resolution to isolate the mystacial pad's small and compactly arranged muscles. Thus, we propose functional anatomy as a complementary approach for studying the individual and coordinated effects of the mystacial pad muscles on vibrissae movements. Our functional analysis addresses the kinematic measurements of whisking motion patterns recorded in freely exploring rats. Combined with anatomical descriptions of muscles and fascia elements of the mystacial pad in situ, we found: (1) the contributions of individual mystacial pad muscles to the different whisking motion patterns; (2) active touch by microvibrissae, and its underlying mechanism; and (3) dynamic position changes of the vibrissae pivot point, as determined by the movements of the corium and subcapsular fibrous mat. Finally, we hypothesize that each of the rat mystacial pad muscles is specialized for a particular function in a way that matches the architecture of the fascial structures. Consistent with biotensegrity principles, the muscles and fascia form a network of structural support and continuous tension that determine the arrangement and motion of the embedded individual follicles.


Assuntos
Movimento , Músculos , Ratos , Animais , Movimento/fisiologia , Tato/fisiologia , Movimento (Física) , Vibrissas/fisiologia
5.
Nat Commun ; 15(1): 5883, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003286

RESUMO

Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.


Assuntos
Neurônios , Optogenética , Vibrissas , Animais , Vibrissas/fisiologia , Masculino , Neurônios/fisiologia , Camundongos , Fenômenos Biomecânicos , Movimentos da Cabeça/fisiologia , Cabeça/fisiologia , Camundongos Endogâmicos C57BL , Percepção do Tato/fisiologia , Tálamo/fisiologia , Tálamo/citologia
6.
Commun Biol ; 6(1): 562, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237075

RESUMO

Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.


Assuntos
Neurônios , Percepção do Tato , Neurônios/fisiologia , Tato , Percepção Auditiva/fisiologia , Audição
7.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425961

RESUMO

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

8.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33979634

RESUMO

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Assuntos
Dopamina/metabolismo , Proteínas de Insetos/genética , Optogenética/métodos , Rodopsina/genética , Potenciais Sinápticos , Animais , Células Cultivadas , Culicidae , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Células HEK293 , Humanos , Proteínas de Insetos/metabolismo , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Rodopsina/metabolismo , Substância Negra/citologia , Substância Negra/fisiologia
9.
J Physiol Sci ; 68(6): 875-880, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29680978

RESUMO

A self-adjusting head holder is designed to allow stable fixation and precise positioning (anterior-posterior, pitch, and roll) of guinea pig head in stereotaxic devices. These are achieved with no use of ear-bars. It is thus easy to use, preferable for studies of the auditory system, and for avoiding tissue damage of the ear in general. This head holder can accommodate various head sizes and is thus adapted for males and females of a large range of body weights, as confirmed for guinea pigs of 360-940 g. Moreover, this head holder is easy and cost-effective to manufacture, making it accessible for any lab. Here, we present background and mechanical rationale, the technical specifications, and step-by-step manufacturing instructions for the stainless-steel and the plastic MRI-compatible versions of our self-adjusting head holder.


Assuntos
Imobilização/instrumentação , Técnicas Estereotáxicas/instrumentação , Animais , Cobaias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA