Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 53: 102527, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034006

RESUMO

The Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) has organized a second collaborative exercise on a simulated case of Disaster Victim Identification (DVI), with the participation of eighteen laboratories. The exercise focused on the analysis of a simulated plane crash case of medium-size resulting in 66 victims with varying degrees of fragmentation of the bodies (with commingled remains). As an additional difficulty, this second exercise included 21 related victims belonging to 6 families among the 66 missings to be identified. A total number of 228 post-mortem samples were represented with aSTR and mtDNA profiles, with a proportion of partial aSTR profiles simulating charred remains. To perform the exercise, participants were provided with aSTR and mtDNA data of 51 reference pedigrees -some of which deficient-including 128 donors for identification purposes. The exercise consisted firstly in the comparison of the post-mortem genetic profiles in order to re-associate fragmented remains to the same individual and secondly in the identification of the re-associated remains by comparing aSTR and mtDNA profiles with reference pedigrees using pre-established thresholds to report a positive identification. Regarding the results of the post-mortem samples re-associations, only a small number of discrepancies among participants were detected, all of which were from just a few labs. However, in the identification process by kinship analysis with family references, there were more discrepancies in comparison to the correct results. The identification results of single victims yielded fewer problems than the identification of multiple related victims within the same family groups. Several reasons for the discrepant results were detected: a) the identity/non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, b) some laboratories failed to use all family references to report the DNA match, c) In families with several related victims, some laboratories firstly identified some victims and then unnecessarily used their genetic information to identify the remaining victims within the family, d) some laboratories did not correctly use "prior odds" values for the Bayesian treatment of the episode for both post-mortem/post-mortem re-associations as well as the ante-mortem/post-mortem comparisons to evaluate the probability of identity. For some of the above reasons, certain laboratories failed to identify some victims. This simulated "DNA-led" identification exercise may help forensic genetic laboratories to gain experience and expertize for DVI or MPI in using genetic data and comparing their own results with the ones in this collaborative exercise.


Assuntos
Impressões Digitais de DNA/métodos , Vítimas de Desastres , Genética Forense/métodos , Treinamento por Simulação , Acidentes Aeronáuticos , DNA Mitocondrial , Haplótipos , Humanos , Repetições de Microssatélites , Linhagem
2.
Forensic Sci Int Genet ; 25: 210-213, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27690358

RESUMO

Communicating and interpreting genetic evidence in the administration of justice is currently a matter of great concern, due to the theoretical and technical complexity of the evaluative reporting and large difference in expertise between forensic experts and law professionals. A large number of initiatives have been taken trying to bridge this gap, contributing to the education of both parties. Results however have not been very encouraging, as most of these initiatives try to cope globally with the problem, addressing simultaneously theoretical and technical approaches which are in a quite heterogeneous state of development and validation. In consequence, the extension and complexity of the resulting documents disheartens their study by professionals (both jurists and geneticists) and makes a consensus very hard to reach even among the genetic experts' community. Here we propose a 'back-to-basics', example-driven approach, in which a model report for the two most common situations faced by forensic laboratories is presented. We do hope that this strategy will provide a solid basis for a stepwise generalisation.


Assuntos
Prova Pericial/normas , Ciências Forenses/normas , Prova Pericial/legislação & jurisprudência , Ciências Forenses/legislação & jurisprudência , Humanos , Laboratórios/legislação & jurisprudência , Laboratórios/normas , Relatório de Pesquisa/legislação & jurisprudência , Relatório de Pesquisa/normas
3.
Forensic Sci Int Genet ; 21: 45-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26716885

RESUMO

The GHEP-ISFG Working Group has recognized the importance of assisting DNA laboratories to gain expertise in handling DVI or missing persons identification (MPI) projects which involve the need for large-scale genetic profile comparisons. Eleven laboratories participated in a DNA matching exercise to identify victims from a hypothetical conflict with 193 missing persons. The post mortem database was comprised of 87 skeletal remain profiles from a secondary mass grave displaying a minimal number of 58 individuals with evidence of commingling. The reference database was represented by 286 family reference profiles with diverse pedigrees. The goal of the exercise was to correctly discover re-associations and family matches. The results of direct matching for commingled remains re-associations were correct and fully concordant among all laboratories. However, the kinship analysis for missing persons identifications showed variable results among the participants. There was a group of laboratories with correct, concordant results but nearly half of the others showed discrepant results exhibiting likelihood ratio differences of several degrees of magnitude in some cases. Three main errors were detected: (a) some laboratories did not use the complete reference family genetic data to report the match with the remains, (b) the identity and/or non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, and (c) many laboratories did not properly evaluate the prior odds for the event. The results suggest that large-scale profile comparisons for DVI or MPI is a challenge for forensic genetics laboratories and the statistical treatment of DNA matching and the Bayesian framework should be better standardized among laboratories.


Assuntos
Identificação Biométrica/métodos , Impressões Digitais de DNA/métodos , DNA/análise , Bases de Dados Genéticas , Genética Forense/métodos , Teorema de Bayes , Comportamento Cooperativo , DNA/genética , Desastres , Humanos , Repetições de Microssatélites , Linhagem , Portugal , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA