Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682248

RESUMO

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Assuntos
Estresse do Retículo Endoplasmático , Transdução de Sinais , Trombospondinas/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Trombospondinas/genética
2.
Nature ; 577(7790): 405-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775156

RESUMO

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2, despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury4,5. Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2+ and CX3CR1+ macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


Assuntos
Imunidade Inata , Miócitos Cardíacos/imunologia , Transplante de Células-Tronco , Células-Tronco , Animais , Diferenciação Celular , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/transplante , Rejuvenescimento
3.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126682

RESUMO

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Assuntos
Actinas , Cardiomiopatias , Humanos , Animais , Camundongos , Actinas/metabolismo , Sarcômeros/metabolismo , Estudo de Associação Genômica Ampla , Citoesqueleto de Actina/metabolismo , Cardiomiopatias/metabolismo , Mamíferos/genética , Proteínas dos Microfilamentos/metabolismo , Transativadores/metabolismo , Tropomodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
4.
Circ Res ; 127(3): 379-390, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299299

RESUMO

RATIONALE: Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.


Assuntos
Cálcio/metabolismo , Membro Posterior/irrigação sanguínea , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Animais , Sinalização do Cálcio , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Precondicionamento Isquêmico , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia
5.
J Biol Chem ; 294(22): 8918-8929, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31006653

RESUMO

Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.


Assuntos
Cardiomiopatias/patologia , Coração/fisiologia , Miocárdio/metabolismo , Proteína com Valosina/metabolismo , Animais , Cardiomiopatias/metabolismo , Células Cultivadas , Degradação Associada com o Retículo Endoplasmático , Laminas/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Ribossômicas/metabolismo , Ubiquitinação , Proteína com Valosina/genética
6.
Circulation ; 138(25): 2931-2939, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29991486

RESUMO

BACKGROUND: The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS: Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS: We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS: Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Antígenos Ly/metabolismo , Endotélio Vascular/fisiologia , Coração/fisiologia , Proteínas de Membrana/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Animais , Antígenos Ly/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Vasos Coronários/cirurgia , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Desenvolvimento Muscular , Infarto do Miocárdio/genética
7.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29653926

RESUMO

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Assuntos
Fibronectinas/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Quinase 1 de Adesão Focal/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fosforilação , Polimerização , Transdução de Sinais/efeitos dos fármacos
8.
BMC Health Serv Res ; 20(1): 2, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31888611

RESUMO

BACKGROUND: Clinical supervision is recommended for allied health professionals for the purpose of supporting them in their professional role, continued professional development and ensuring patient safety and high quality care. The aim of this mixed methods study was to explore allied health professionals' perceptions about the aspects of clinical supervision that can facilitate effective clinical supervision. METHODS: Individual semi-structured interviews were conducted on a purposive sample of 38 allied health professionals working in a metropolitan public hospital. Qualitative analysis was completed using an interpretive description approach. To enable triangulation of qualitative data, a quantitative descriptive survey of clinical supervision effectiveness was also conducted using the Manchester Clinical Supervision Scale (MCSS-26). RESULTS: Three main themes emerged from qualitative analysis: Allied health professionals reported that clinical supervision was most effective when their professional development was the focus of clinical supervision; the supervisor possessed the skills and attributes required to facilitate a constructive supervisory relationship; and the organisation provided an environment that facilitated this relationship together with their own professional development. Three subthemes also emerged within each of the main themes: the importance of the supervisory relationship; prioritisation of clinical supervision relative to other professional duties; and flexibility of supervision models, processes and approaches to clinical supervision. The mean MCSS-26 score was 79.2 (95%CI 73.7 to 84.3) with scores ranging from 44 to 100. MCSS-26 results converged with the qualitative findings with participants reporting an overall positive experience with clinical supervision. CONCLUSIONS: The factors identified by allied health professionals that influenced the effectiveness of their clinical supervision were mostly consistent among the professions. However, allied health professionals reported using models of clinical supervision that best suited their profession's role and learning style. This highlighted the need for flexible approaches to allied health clinical supervision that should be reflected in clinical supervision policies and guidelines. Many of the identified factors that influence the effectiveness of clinical supervision of allied health professionals can be influenced by health organisations.


Assuntos
Pessoal Técnico de Saúde , Administração de Recursos Humanos em Hospitais , Atitude do Pessoal de Saúde , Pesquisas sobre Atenção à Saúde , Humanos , Entrevistas como Assunto , Papel Profissional , Pesquisa Qualitativa , Desenvolvimento de Pessoal
9.
Circulation ; 136(6): 549-561, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28356446

RESUMO

BACKGROUND: In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS: A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS: In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS: These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.


Assuntos
Fibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Actinas/metabolismo , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/citologia , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Transdução de Sinais
10.
Hum Mol Genet ; 25(6): 1192-202, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744329

RESUMO

Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD.


Assuntos
Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Serpinas/biossíntese , Serpinas/genética , Proteínas de Fase Aguda/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Feminino , Integrinas/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Sarcolema/metabolismo , Serpinas/metabolismo , Transgenes , Regulação para Cima , Utrofina/genética , Utrofina/metabolismo
11.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26966179

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Assuntos
Catepsinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Fibras Musculares Esqueléticas/enzimologia , Distrofia Muscular Animal/enzimologia , Distrofia Muscular de Duchenne/enzimologia , Animais , Citoesqueleto/enzimologia , Citoesqueleto/genética , Citoesqueleto/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Necrose , Proteólise , Sarcolema/enzimologia , Sarcolema/genética , Sarcolema/patologia
14.
Hum Mol Genet ; 23(14): 3706-15, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24556214

RESUMO

Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/patologia , Proteínas de Neoplasias/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofia Muscular Animal , Proteína ORAI1 , Molécula 1 de Interação Estromal
15.
Hum Mol Genet ; 23(20): 5452-63, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24876160

RESUMO

Muscular dystrophies are a group of genetic diseases that lead to muscle wasting and, in most cases, premature death. Cytokines and inflammatory factors are released during the disease process where they promote deleterious signaling events that directly participate in myofiber death. Here, we show that p38α, a kinase in the greater mitogen-activated protein kinase (MAPK)-signaling network, serves as a nodal regulator of disease signaling in dystrophic muscle. Deletion of Mapk14 (p38α-encoding gene) in the skeletal muscle of mdx- (lacking dystrophin) or sgcd- (δ-sarcoglycan-encoding gene) null mice resulted in a significant reduction in pathology up to 6 months of age. We also generated MAPK kinase 6 (MKK6) muscle-specific transgenic mice to model heightened p38α disease signaling that occurs in dystrophic muscle, which resulted in severe myofiber necrosis and many hallmarks of muscular dystrophy. Mechanistically, we show that p38α directly induces myofiber death through a mitochondrial-dependent pathway involving direct phosphorylation and activation of the pro-death Bcl-2 family member Bax. Indeed, muscle-specific deletion of Bax, but not the apoptosis regulatory gene Tp53 (encoding p53), significantly reduced dystrophic pathology in the muscles of MKK6 transgenic mice. Moreover, use of a p38 MAPK pharmacologic inhibitor reduced dystrophic disease in Sgcd(-/-) mice suggesting a future therapeutic approach to delay disease.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Proteína X Associada a bcl-2/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Sarcoglicanas/genética , Transdução de Sinais , Proteína X Associada a bcl-2/genética
16.
J Mol Cell Cardiol ; 87: 204-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26334248

RESUMO

There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, ß and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with the loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-loxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1ß) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca(2+) handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, the loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1ß isoform in affecting cardiac contractile function.


Assuntos
Coração/fisiologia , Contração Miocárdica/genética , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animais , Técnicas de Introdução de Genes , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Miofibrilas/genética , Miofibrilas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 2C , Sarcômeros/genética , Sarcômeros/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
17.
J Mol Cell Cardiol ; 87: 38-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26241845

RESUMO

Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor that partners with Orai1 to elicit Ca(2+) entry in response to endoplasmic reticulum (ER) Ca(2+) store depletion. While store-operated Ca(2+) entry (SOCE) is important for maintaining ER Ca(2+) homeostasis in non-excitable cells, it is unclear what role it plays in the heart, although STIM1 is expressed in the heart and upregulated during disease. Here we analyzed transgenic mice with STIM1 overexpression in the heart to model the known increase of this protein in response to disease. As expected, STIM1 transgenic myocytes showed enhanced Ca(2+) entry following store depletion and partial co-localization with the type 2 ryanodine receptor (RyR2) within the sarcoplasmic reticulum (SR), as well as enrichment around the sarcolemma. STIM1 transgenic mice exhibited sudden cardiac death as early as 6weeks of age, while mice surviving past 12weeks of age developed heart failure with hypertrophy, induction of the fetal gene program, histopathology and mitochondrial structural alterations, loss of ventricular functional performance and pulmonary edema. Younger, pre-symptomatic STIM1 transgenic mice exhibited enhanced pathology following pressure overload stimulation or neurohumoral agonist infusion, compared to controls. Mechanistically, cardiac myocytes isolated from STIM1 transgenic mice displayed spontaneous Ca(2+) transients that were prevented by the SOCE blocker SKF-96365, increased L-type Ca(2+) channel (LTCC) current, and enhanced Ca(2+) spark frequency. Moreover, adult cardiac myocytes from STIM1 transgenic mice showed both increased diastolic Ca(2+) and maximal transient amplitude but no increase in total SR Ca(2+) load. Associated with this enhanced Ca(2+) profile was an increase in cardiac nuclear factor of activated T-cells (NFAT) and Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity. We conclude that STIM1 has an unexpected function in the heart where it alters communication between the sarcolemma and SR resulting in greater Ca(2+) flux and a leaky SR compartment.


Assuntos
Canais de Cálcio/biossíntese , Cálcio/metabolismo , Cardiomiopatias/genética , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos , Camundongos Transgênicos , Células Musculares/metabolismo , Células Musculares/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patologia , Molécula 1 de Interação Estromal
18.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798483

RESUMO

Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrß) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrß-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.

19.
Res Sq ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39184103

RESUMO

Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrß) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrß-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.

20.
Cell Rep ; 43(5): 114149, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678560

RESUMO

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Assuntos
Fator 4 Ativador da Transcrição , Músculo Esquelético , Atrofia Muscular , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Trombospondina 1 , Fator de Crescimento Transformador beta , Animais , Masculino , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA