Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(8): 4347-4357, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28355054

RESUMO

A lack of consensus on the distributions and formation pathways of secondary organic aerosols (SOA) over oceanic regions downwind of pollution sources limits our ability to assess their climate impact globally. As a case study, we report here on water-soluble SOA components such as dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in the continental outflows from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA) to the Bay of Bengal. Oxalic acid (C2) is the dominant species followed by succinic (C4) and glyoxylic acids (ωC2) in the outflow. Nonsea-salt SO42- also dominates (∼70%) total water-soluble inorganic constituents and correlates well with aerosol liquid water content (LWC) and C2, indicating their production through aqueous phase photochemical reactions. Furthermore, mass ratios of dicarboxylic acids (C2/C4, C2/ωC2), and their relative abundances in water-soluble organic carbon and total organic carbon are quite similar between the two continental (IGP and SEA) outflows, indicating the formation of SOA through aqueous phase photochemical reactions in LWC-enriched aerosols, largely controlled by anthropogenic SO42-.


Assuntos
Poluentes Atmosféricos , Água , Aerossóis , Monitoramento Ambiental , Peso Molecular , Oceanos e Mares
2.
Environ Sci Technol ; 46(19): 10390-404, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22994868

RESUMO

This paper reviews our knowledge of the measurement and modeling of mineral dust emissions to the atmosphere, its transport and deposition to the ocean, the release of iron from the dust into seawater, and the possible impact of that nutrient on marine biogeochemistry and climate. Of particular concern is our poor understanding of the mechanisms and quantities of dust deposition as well as the extent of iron solubilization from the dust once it enters the ocean. Model estimates of dust deposition in remote oceanic regions vary by more than a factor of 10. The fraction of the iron in dust that is available for use by marine phytoplankton is still highly uncertain. There is an urgent need for a long-term marine atmospheric surface measurement network, spread across all oceans. Because the southern ocean is characterized by large areas with high nitrate but low chlorophyll surface concentrations, that region is particularly sensitive to the input of dust and iron. Data from this region would be valuable, particularly at sites downwind from known dust source areas in South America, Australia, and South Africa. Coordinated field experiments involving both atmospheric and marine measurements are recommended to address the complex and interlinked processes and role of dust/Fe fertilization on marine biogeochemistry and climate.


Assuntos
Atmosfera , Poeira , Minerais , Oceanos e Mares , Atmosfera/química , Austrália , Clorofila , Poeira/análise , Ferro/química , Biologia Marinha/métodos , Modelos Teóricos , Pesquisa/tendências , Água do Mar/química , África do Sul
3.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233872

RESUMO

Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.

4.
Environ Sci Process Impacts ; 21(6): 970-987, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31089643

RESUMO

In this paper, we synthesize the size distribution and optical properties of the atmospheric water-soluble fraction of light-absorbing organic carbon (brown carbon; BrC) in the continental outflow from the Indo-Gangetic Plain (IGP) in South Asia to the North Indian Ocean. A comparison of the mass absorption coefficient of water-soluble BrC (babs-WSBrC-365nm) in PM2.5 with that in PM10 sampled over the Bay of Bengal reveals the dominance of BrC in fine mode. Furthermore, the babs-BrC-365nm shows a significant linear relationship with mass concentrations of airborne particulate matter, water-soluble organic carbon and non-sea-salt-K+ in the continental outflow from the IGP. This observation emphasizes the ubiquitous nature and significant contribution of water-soluble BrC from biomass burning emissions (BBEs). Comparing the absorption properties from this study with global datasets, it is discernible that BBEs dominate BrC absorption. Furthermore, the imaginary refractive index of water-soluble BrC (kWSBrC-365nm) in marine aerosols sampled over the North Indian Ocean during November is significantly higher than during December to January. Thus, significant temporal variability is associated with crop-residue burning emissions in the IGP on the composition of BrC over the North Indian Ocean. Our estimates show that the babs-WSBrC-365nm and kWSBrC-365nm from post-harvest crop-residue burning emissions in the IGP are much higher than the BBEs from the southeastern United States and Amazonian forest fires. Another major finding of this study is the lack of significant relationship between kWSBrC-365nm and the mass ratio of elemental carbon to particulate organic matter, as previously suggested by chamber experiments to model varying BrC absorption properties in ambient aerosols. Therefore, considerable spatio-temporal variability prevails among emission sources (wood burning vs. crop-residue burning), which needs to be considered when assessing the regional radiative forcing of BrC relative to major absorbing elemental carbon.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Material Particulado/análise , Aerossóis , Agricultura/métodos , Ásia , Biomassa , Produtos Agrícolas , Monitoramento Ambiental , Oceano Índico , Madeira
5.
Sci Adv ; 5(5): eaau7671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31049393

RESUMO

Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.


Assuntos
Ferro/química , Aerossóis , Oceano Atlântico , Atmosfera/química , Poeira , Óxido Ferroso-Férrico/química , Oceano Índico , Modelos Químicos , Concentração Osmolar , Solo/química , Solubilidade
6.
Atmos Chem Phys ; 17(13): 8189-8210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151838

RESUMO

Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3- and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model - observation ratios, weighted by grid-cell area and numbers of observations, (RA,n) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO3- concentrations (RA,n = 1.4 - 2.9) and under-estimates NH4+ concentrations (RA,n = 0.5 - 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA,n = 0.6 - 2.6 for NO3-, 0.6 - 3.1 for NH4+). Values of RA,n for NHx CalDep - ModDep comparisons were approximately double the corresponding values for NH4+ CalDep - ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model - observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA