Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(2): 905-913, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845682

RESUMO

Owing to the fact that σ stacking is as important as π stacking in determining the structural motifs of aliphatic saturated cyclic hydrocarbons, in this work we have provided the first unambiguous spectroscopic evidence for the existence of σ stacking interactions in cyclohexane dimers at low temperatures. Molecular beam experiments performed using effusive nozzle and supersonic jet sources on cyclohexane in an N2 matrix generated cyclohexane dimers stabilized through σ stacking and the dimers were characterized by infrared spectroscopy. The ab initio computations carried out on cyclohexane dimers identified eclipsed (face-to-face), parallel displaced and T-shaped structures, which are predominantly stabilized by σ stacking interactions. While natural bond orbital analysis substantiated a significant amount of σ → σ* interactions involved in the stabilization, the Atoms in Molecules analysis indicated that the stacking is induced by a plausible 'dihydrogen bonding' interaction. Energy decomposition analysis disclosed that a large measure of dispersion interactions effectively contributes for the overall stability of cyclohexane dimers.

2.
Phys Chem Chem Phys ; 21(23): 12250-12264, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31139812

RESUMO

The π electron systems are the conventional electron donors to the hydrogen acceptors in hydrogen bonding. Apart from the hydrogen atom, halogens, chalcogens, pnicogens and triel/tetrel atoms can also be envisaged as electron acceptors involving π clouds. Markedly, in pnicogenπ interactions, the bonding of the hypervalent (predominantly pentavalent) state of the phosphorus atom with π electron donors is elusive and can be thought of as an intuitive extension to trivalent phosphorusπ interactions. In this work, on the one hand, POCl3 was taken as a prototypical molecule to explore these pentavalent phosphorus interactions and on the other hand, acetylene (C2H2), ethylene (C2H4) and benzene (C6H6), in which phosphorusπ bonding can be expected to compete with hydrogen and halogen bonding interactions, were taken as π electron donors. All three POCl3-C2H2, POCl3-C2H4 and POCl3-C6H6 heterodimers were experimentally generated at low temperatures in Ar and N2 matrices and were characterized by both infrared spectroscopy and state-of-the-art quantum chemical computations. Though hydrogen bonding dominates in POCl3-C2H2 and POCl3-C2H4 heterodimers, phosphorus bonding plays a definite and non-trivial role in their overall stabilization. An interesting paradigm transformation was noticed in the POCl3-C6H6 system, where pentavalent phosphorusπ bonding was observed to completely influence the hydrogen bonding interaction. To further shed light on these Pπ systems, the interaction characteristics were analyzed with the help of electrostatic potential mapping, natural bond orbital and energy decomposition analyses.

3.
Phys Chem Chem Phys ; 20(34): 22058-22075, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30112531

RESUMO

Phosphorus, an important element among the pnicogen group, opens up avenues for experimental and computational explorations of its interaction in a variety of compounds. Although experimental proof of trivalent phosphorus bonding is limited and is growing with time, phosphorus bonding with pentavalent phosphorus has been a long sought after interaction both computationally and experimentally. In the present work, for the first time, we have provided unambiguous experimental evidence for the pentavalent phosphorus bonding interaction by exploiting a phosphoryl chloride (POCl3) prototype under isolated conditions at low temperatures. The POCl3 dimer and higher aggregates can be set as a unique example possessing pentavalent phosphorus bonding with a competing halogen bonding interaction. The POCl3-H2O heterodimer is another interesting system, stabilized through multiple phosphorus and hydrogen bonded interactions. Using matrix isolation infrared spectroscopy, the POCl3 homodimer and POCl3-H2O heterodimer were characterized and the structures were elucidated by employing ab initio and DFT methods. The multifaceted interactions in the POCl3 paradigm were investigated by using Natural Bond Orbital, Energy Decomposition and Electrostatic Potential Mapping analyses.

4.
J Phys Chem A ; 122(46): 9073-9083, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30375867

RESUMO

The simultaneous possession of π-electron clouds and acidic hydrogen atoms in pyrrole (C4H5N) and phenol (C6H5OH) framework opens the potentiality in exploring the synergistic interactions in their weakly bonded complexes. In this work, the synergistic hydrogen bonding in C4H5N-C6H5OH complexes is therefore investigated using FTIR spectroscopy under isolated conditions at low temperatures. Computations performed at DFT, DFT-GD3, M06, and MP2 level of theories employing aug-cc-pVDZ basis set yielded three minima on the potential energy surface for the 1:1 complex of C4H5N-C6H5OH. All three optimized structures showed synergistic interactions, where both C6H5OH and C4H5N simultaneously act as a proton donor and acceptor at MP2/aug-cc-pVDZ level of theory. In the global minimum complex A, the hydroxyl proton and the C-H group of C6H5OH interact with the π-cloud of C4H5N. The first local minimum corresponds to complex B, where the N-H and π-electrons of C4H5N interact with π-electrons of C6H5OH. In complex C, the N-H and C-H groups of C4H5N interact with O-H and π-cloud of C6H5OH, respectively. Complex A was the lowest energy structure at all levels of theory, whereas the stabilization energies of complexes B and C varied depending upon the levels of theory used. Interestingly, the stabilization energies as predicted by the DFT method are in accordance with Etter's and Legon-Millen rules; however, a deviation in the Legon-Millen rule was discerned with empirical (DFT-GD3, M06) and dispersion corrected (MP2) methods. On comparing the experimental vibrational wavenumber shifts in the N-H stretching and bending modes of C4H5N and O-H stretching mode of C6H5OH submolecules with the computed shifts, all three complexes were identified in the N2 matrix. Natural Bond Orbital and Energy Decomposition analyses were performed to characterize the nature of the synergistic interaction in these complexes.

5.
J Phys Chem A ; 122(9): 2445-2460, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29451787

RESUMO

Hydrogen-bonded interactions of pyrrole with water and methanol have been studied using matrix isolation infrared spectroscopy and compared with the calculation performed on dimethyl ether. Computations carried out at MP2/aug-cc-pVDZ level of theory yielded two minima for the pyrrole-water and pyrrole-methanol complexes. The global and local minima correspond to the N-H···O and O-H···π complexes, respectively, where the N-H group of pyrrole interacts with oxygen of water/methanol and O-H of water and methanol interacts with the π cloud of pyrrole. Computations performed on the pyrrole-dimethyl ether gave only N-H···O type complex. From the experimental vibrational wavenumber shifts in the N-H stretching and N-H bending modes of pyrrole, as well as in the O-H stretching modes of water and methanol, the 1:1 N-H···O complexes were discerned. The strength of the N-H···O hydrogen bond and the corresponding shift in the N-H stretching vibrational wavenumbers increases in the order pyrrole-water < pyrrole-methanol < pyrrole-dimethyl ether, where a proton is successively replaced by a methyl group. Apart from the 1:1 complexes, higher clusters of 2:1 and 1:2 pyrrole-water and pyrrole-methanol complexes were also generated in N2 matrix. Atoms in molecules and natural bond orbital analyses were carried out at the MP2/aug-cc-pVDZ level to understand the nature of interaction in the 1:1 pyrrole-water, pyrrole-methanol and pyrrole-dimethyl ether complexes.

6.
J Phys Chem A ; 122(41): 8229-8242, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231615

RESUMO

The conformational analysis of long chain phosphates poses a serious challenge due to the presence of rotationally flexible multiple alkyl groups. Tri- sec-butyl phosphate (TsBP) is an interesting example, in which branching can be expected to influence the conformational landscape. To solve the conformational problem of TsBP systematically, the conformations of model dimethyl- sec-butyl phosphate (DMsBP), a molecule possessing a single secondary butyl strand, were analyzed. On the basis of the analysis of the energy profile of DMsBP, a few conformational bunches were eliminated. The presence of branched methyl group appears to completely influence the conformational space of TsBP and as a result, the number of conformations is drastically reduced in comparison to its structural isomer, tri- n-butyl phosphate (TBP). B3LYP level of theory in association with 6-311++G(d,p) basis set was used for computing all the conformer geometries. Experimentally, the conformations of TsBP were studied using infrared spectroscopy by trapping the molecule in N2 and Ar matrixes at low temperatures, which were correlated well with the computational results.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 361-369, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30721851

RESUMO

Conformations of diethyl ether (DEE) were studied at low temperatures in N2 and Ar matrixes. Computations performed at B3LYP/aug-cc-pVDZ level of theory yielded three minima corresponding to tt, tg± and g±g± conformers of DEE. Of the three, the tt and tg± conformers of DEE were experimentally identified in N2 and Ar matrixes. Furthermore, hydrogen bonded complexes of pyrrole (py) with DEE have been investigated using Density Functional Theory (DFT) and matrix isolation infrared spectroscopy. Computations performed at B3LYP level of theory using aug-cc-pVDZ basis set on pyrrole with tt and tg± conformers of DEE gave py-DEE-tt and py-DEE-tg± complexes, both characterized by NH⋯O interaction. Experimental evidence for the formation of py-DEE-tt and py-DEE-tg± complexes was affirmed from the shifts in the NH stretching, NH bending regions of pyrrole and COC and CH stretching regions of DEE. NBO analysis was carried out to understand the charge-transfer delocalization interactions in the conformers of DEE and its hydrogen bonded complexes.

8.
J Indian Med Assoc ; 110(1): 50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23029833

RESUMO

A 45-year-old man presented with a mass in left lower eyelid. On examination, the mass was diagnosed as kerato-acanthoma. The mass was excised and excision biopsy confirmed the diagnosis. Kerato-acanthoma almost always regress spontaneously within six months. So persistence of the lesion for more than one year is a rare presentation.


Assuntos
Doenças Palpebrais/diagnóstico , Ceratoacantoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA