Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 12(12): 1912-1919, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34917254

RESUMO

The selective inhibition of RET kinase as a treatment for relevant cancer types including lung adenocarcinoma has garnered considerable interest in recent years and prompted a variety of efforts toward the discovery of small-molecule therapeutics. Hits uncovered via the analysis of archival kinase data ultimately led to the identification of a promising pyrrolo[2,3-d]pyrimidine scaffold. The optimization of this pyrrolo[2,3-d]pyrimidine core resulted in compound 1, which demonstrated potent in vitro RET kinase inhibition and robust in vivo efficacy in RET-driven tumor xenografts upon multiday dosing in mice. The administration of 1 was well-tolerated at established efficacious doses (10 and 30 mg/kg, po, qd), and plasma exposure levels indicated a minimal risk of KDR or hERG inhibition in vivo, as evaluated by Miles assay and free plasma concentrations, respectively.

2.
ACS Med Chem Lett ; 11(4): 558-565, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292564

RESUMO

RET (REarranged during Transfection) kinase gain-of-function aberrancies have been identified as potential oncogenic drivers in lung adenocarcinoma, along with several other cancer types, prompting the discovery and assessment of selective inhibitors. Internal mining and analysis of relevant kinase data informed the decision to investigate a pyrazolo[1,5-a]pyrimidine scaffold, where subsequent optimization led to the identification of compound WF-47-JS03 (1), a potent RET kinase inhibitor with >500-fold selectivity against KDR (Kinase insert Domain Receptor) in cellular assays. In subsequent mouse in vivo studies, compound 1 demonstrated effective brain penetration and was found to induce strong regression of RET-driven tumor xenografts at a well-tolerated dose (10 mg/kg, po, qd). Higher doses of 1, however, were poorly tolerated in mice, similar to other pyrazolo[1,5-a]pyrimidine compounds at or near the efficacious dose, and indicative of the narrow therapeutic windows seen with this scaffold.

3.
J Med Chem ; 56(14): 5675-90, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23742252

RESUMO

The synthesis, preclinical profile, and in vivo efficacy in rat xenograft models of the novel and selective anaplastic lymphoma kinase inhibitor 15b (LDK378) are described. In this initial report, preliminary structure-activity relationships (SARs) are described as well as the rational design strategy employed to overcome the development deficiencies of the first generation ALK inhibitor 4 (TAE684). Compound 15b is currently in phase 1 and phase 2 clinical trials with substantial antitumor activity being observed in ALK-positive cancer patients.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonas/síntese química , Quinase do Linfoma Anaplásico , Animais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Cães , Humanos , Macaca fascicularis , Masculino , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Sulfonas/farmacocinética , Sulfonas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
ACS Med Chem Lett ; 3(2): 140-5, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900443

RESUMO

Neurotrophins and their receptors (TRKs) play key roles in the development of the nervous system and the maintenance of the neural network. Accumulating evidence points to their role in malignant transformations, chemotaxis, metastasis, and survival signaling and may contribute to the pathogenesis of a variety of tumors of both neural and non-neural origin. By screening the GNF kinase collection, a series of novel oxindole inhibitors of TRKs were identified. Optimization led to the identification of GNF-5837 (22), a potent, selective, and orally bioavailable pan-TRK inhibitor that inhibited tumor growth in a mouse xenograft model derived from RIE cells expressing both TRKA and NGF. The properties of 22 make it a good tool for the elucidation of TRK biology in cancer and other nononcology indications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA