Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 39(1-2): 141-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957597

RESUMO

Breweries produce an increasing selection of beer and nonbeer beverages. Yeast and filamentous fungi may compromise quality and safety of these products in several ways. Recent studies on fungal communities in breweries are scarce and mostly conducted with culture-dependent methods. We explored fungal diversity in the production of alcoholic and nonalcoholic beverages in four breweries. Samples were taken for next generation sequencing (NGS) at the key contamination sites in 10 filling lines. Moreover, fungal isolates were identified in 68 quality control samples taken from raw materials, filling line surfaces, air, and products. NGS gave a comprehensive view of fungal diversity on filling line surfaces. The surface-attached communities mainly contained ascomycetous fungi. Depending on the site, the dominant genera included Candida, Saccharomyces, Torulaspora, Zygosaccharomyces, Alternaria, Didymella, and Exophiala. Sanger sequencing revealed 28 and 27 species of yeast and filamentous fungi, respectively, among 91 isolates. The most common species Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Wickerhamomuces anomalus were detected throughout production. Filling line surface and air samples showed the greatest diversity of yeast and filamentous fungi, respectively. The isolates of the most common yeast genera Candida, Pichia, Saccharomyces, and Wickerhamomyces showed low spoilage abilities in carbonated, chemically preserved drinks but could grow in products with reduced hurdles. Preservative resistant yeasts were rare, belonging to the species Dekkera bruxellensis, Pichia manschurica, and Zygosaccharomyces bailii. Penicillium spp. were dominant filamentous fungi. The results of this study help to evaluate spoilage risks caused by fungal contaminants detected in breweries.


Assuntos
Fungos , Zygosaccharomyces , Cerveja , Microbiologia de Alimentos , Fungos/genética , Controle de Qualidade , Saccharomyces cerevisiae , Leveduras
2.
J Basic Microbiol ; 52(2): 184-94, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21780148

RESUMO

Fungal infection of barley and malt, particularly by the Fusarium species, is a direct cause of spontaneous overfoaming of beer, referred to as gushing. We have shown previously that small fungal proteins, hydrophobins, act as gushing-inducing factors in beer. The aim of our present study was to isolate and characterize hydrophobins from a gushing-active fungus, Fusarium graminearum (teleomorph Gibberella zeae) and related species. We generated profile hidden Markov models (profile HMMs) for the hydrophobin classes Ia, Ib and II from the multiple sequence alignments of their known members available in public domain databases. We searched the published Fusarium graminearum genome with the Markov models. The best matching sequences and the corresponding genes were isolated from F. graminearum and the related species F. culmorum and F. poae by PCR and characterized. One each of the putative F. graminearum and F. poae hydrophobin genes were expressed in the heterologous host Trichoderma reesei. The proteins corresponding to the genes were purified and identified as hydrophobins and named GzHYD5 and FpHYD5, respectively. Concentrations of 0.003 ppm of these hydrophobins were observed to induce vigorous beer gushing.


Assuntos
Cerveja/microbiologia , Proteínas Fúngicas/metabolismo , Fusarium/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Fusarium/metabolismo , Genes Fúngicos , Cadeias de Markov , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
3.
Toxins (Basel) ; 14(1)2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051022

RESUMO

Fusarium head blight (FHB) is an economically important plant disease. Some Fusarium species produce mycotoxins that cause food safety concerns for both humans and animals. One especially important mycotoxin-producing fungus causing FHB is Fusarium graminearum. However, Fusarium species form a disease complex where different Fusarium species co-occur in the infected cereals. Effective management strategies for FHB are needed. Development of the management tools requires information about the diversity and abundance of the whole Fusarium community. Molecular quantification assays for detecting individual Fusarium species and subgroups exist, but a method for the detection and quantification of the whole Fusarium group is still lacking. In this study, a new TaqMan-based qPCR method (FusE) targeting the Fusarium-specific elongation factor region (EF1α) was developed for the detection and quantification of Fusarium spp. The FusE method was proven as a sensitive method with a detection limit of 1 pg of Fusarium DNA. Fusarium abundance results from oat samples correlated significantly with deoxynivalenol (DON) toxin content. In addition, the whole Fusarium community in Finnish oat samples was characterized with a new metabarcoding method. A shift from F. culmorum to F. graminearum in FHB-infected oats has been detected in Europe, and the results of this study confirm that. These new molecular methods can be applied in the assessment of the Fusarium community and mycotoxin risk in cereals. Knowledge gained from the Fusarium community analyses can be applied in developing and selecting effective management strategies for FHB.


Assuntos
Avena/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Fusarium/isolamento & purificação , Micotoxinas/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Código de Barras de DNA Taxonômico , Grão Comestível/microbiologia , Finlândia , Fusarium/classificação , Limite de Detecção , Micobioma
4.
Antonie Van Leeuwenhoek ; 99(1): 75-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20872177

RESUMO

Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.


Assuntos
Cerveja/microbiologia , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Hordeum/metabolismo , Hordeum/microbiologia , Saccharomycetales/metabolismo , Antibiose , Biodiversidade , Fermentação
5.
J Ind Microbiol Biotechnol ; 34(11): 701-13, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17680285

RESUMO

Fusarium infection of barley and malt can cause severe problems in the malting and brewing industry. In addition to being potential mycotoxin producers, Fusarium fungi are known to cause beer gushing (spontaneous overfoaming of beer). Cereal-derived bacteria and yeasts are potential biocontrol agents. In this study, the antifungal potential of selected yeasts (12 strains) derived from the industrial malting ecosystem was studied in vitro with a plate-screening assay. Several ascomycetous yeast strains showed antagonistic activity against field and storage moulds, Pichia anomala being the most effective strain. The effects of P. anomala VTT C-04565 (C565) were examined in laboratory scale malting with naturally contaminated barley exhibiting gushing potential. P. anomala C565 restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. Grain germination was not disturbed by the presence of yeast. Addition of P. anomala C565 into the steeping seemed to retard wort filtration, but the filtration performance was recovered when yeast culture was combined with Lactobacillus plantarum VTT E-78076. Well-characterized microbial cultures could be used as food-grade biocontrol agents and they offer a natural tool for tailoring of malt properties.


Assuntos
Antibiose/fisiologia , Fusarium/crescimento & desenvolvimento , Leveduras/fisiologia , Hordeum/microbiologia , Microbiologia Industrial/métodos , Doenças das Plantas/microbiologia , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA