Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 31(27): 7633-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26086241

RESUMO

Progresses in cold atmospheric plasma technologies have made possible the synthesis of nanoparticles in aqueous solutions using plasma electrochemistry principles. In this contribution, a reactor based on microhollow cathodes and operating at atmospheric pressure was developed to synthesize iron-based nanoclusters (nanoparticles). Argon plasma discharges are generated at the tip of the microhollow cathodes, which are placed near the surface of an aqueous solution containing iron salts (FeCl2 and FeCl3) and surfactants (biocompatible dextran). Upon reaction at the plasma-liquid interface, reduction processes occur and lead to the nucleation of ultrasmall iron-based nanoclusters (IONCs). The purified IONCs were investigated by XPS and FTIR, which confirmed that the nucleated clusters contain a highly hydrated form of iron oxide, close to the stoichiometric constituents of α-FeOOH (goethite) or Fe5O3(OH)9 (ferrihydrite). Relaxivity values of r1 = 0.40 mM(-1) s(-1) and r2/r1 = 1.35 were measured (at 1.41 T); these are intermediate values between the relaxometric properties of superparamagnetic iron oxide nanoparticles used in medicine (USPIO) and those of ferritin, an endogenous contrast agent. Plasma-synthesized IONCs were injected into the mouse model and provided positive vascular signal enhancement in T1-w. MRI for a period of 10-20 min. Indications of rapid and strong elimination through the urinary and gastrointestinal tracts were also found. This study is the first to report on the development of a compact reactor suitable for the synthesis of MRI iron-based contrast media solutions, on site and upon demand.


Assuntos
Meios de Contraste/química , Técnicas Eletroquímicas , Compostos Férricos/química , Nanopartículas/química , Animais , Meios de Contraste/síntese química , Meios de Contraste/farmacocinética , Compostos Férricos/síntese química , Compostos Férricos/farmacocinética , Camundongos , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química
2.
ACS Appl Mater Interfaces ; 3(3): 750-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21381643

RESUMO

Fog formation on transparent substrates constitutes a major challenge in several optical applications requiring excellent light transmission characteristics. Anti-fog coatings are hydrophilic, enabling water to spread uniformly on the surface rather than form dispersed droplets. Despite the development of several anti-fog coating strategies, the long-term stability, adherence to the underlying substrate, and resistance to cleaning procedures are not yet optimal. We report on a polymer-based anti-fog coating covalently grafted onto glass surfaces by means of a multistep process. Glass substrates were first activated by plasma functionalization to provide amino groups on the surface, resulting in the subsequent covalent bonding of the polymeric layers. The anti-fog coating was then created by the successive spin coating of (poly(ethylene-maleic anhydride) (PEMA) and poly(vinyl alcohol) (PVA) layers. PEMA acted as an interface by covalently reacting with both the glass surface amino functionalities and the PVA hydroxyl groups, while PVA added the necessary surface hydrophilicity to provide anti-fog properties. Each step of the procedure was monitored by XPS, which confirmed the successful grafting of the coating. Coating thickness was evaluated by profilometry, nanoindentation, and UV visible light transmission. The hydrophilic nature of the anti-fog coating was assessed by water contact angle (CA), and its anti-fog efficiency was determined visually and tested quantitatively for the first time using an ASTM standard protocol. Results show that the PEMA/PVA coating not only delayed the initial period required for fog formation but also decreased the rate of light transmission decay. Finally, following a 24 hour immersion in water, these PEMA/PVA coatings remained stable and preserved their anti-fog properties.


Assuntos
Lentes , Metilmetacrilatos/química , Álcool de Polivinil/química , Refratometria/instrumentação , Titânio/química , Adsorção , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Luz , Teste de Materiais , Nanomedicina , Radiação , Espalhamento de Radiação
3.
J Biomed Mater Res B Appl Biomater ; 93(2): 531-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20186825

RESUMO

It was previously showed that PLLA nanofiber mesh promoted good endothelial cell proliferation. A new technique was developed to produce nanofibers by air jet spinning inside the tubular shape of vascular prostheses and to characterize this nanofiber mesh. Polymer macromolecule stability was assessed by gel permeation chromatography. Thermal analyses were conducted with differential scanning calorimetry and dynamic mechanical analysis on PLLA nanofibers obtained with 4% and 7% solutions (w/v) in chloroform. Polyethylene terephthalate (PET) was also treated with atmospheric pressure dielectric barrier discharge under air or nitrogen atmosphere to optimize PLLA nanofiber adherence, assessed by peel tests. Air spinning induced a reduction of number-average molecular weight (M(n)) for the 7% PLLA solution but not for the 4% solution. The nanofibers were more crystalline and less sensible to viscoelastic relaxation as a function of aging in the 4% solution than in the 7% solution. Discharge treatment of the PET promoted identical surface modification on PET film and PET textile surfaces. Moreover, the best PLLA nanofibers adhesion results were obtained under nitrogen atmosphere. This study demonstrates that it is possible to coat the internal side of tubular vascular prostheses with PLLA nanofibers, and provides a better understanding of the air spinning process as well as optimizing nanofibers adhesion.


Assuntos
Prótese Vascular , Materiais Revestidos Biocompatíveis , Ácido Láctico , Teste de Materiais , Nanofibras , Polímeros , Animais , Proliferação de Células , Células Endoteliais/citologia , Humanos , Poliésteres
4.
Langmuir ; 25(16): 9432-40, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19572502

RESUMO

We examined the effect of hydrogen content in various polymers in a N2/H2 discharge for surface amine functionalization. Three polymers (polyethylene (PE), polyvinylidene fluoride (PVDF), and poly(tetrafluoroethylene) (PTFE)) containing various amounts of hydrogen and fluorine were treated with an atmospheric pressure dielectric barrier discharge (DBD). While surface modification was observed on the PE and the PVDF in a pure N2 discharge, adding H2 in a N2 discharge was necessary to observe the fluorine etching on the surface of the PVDF and PTFE polymers. The presence of a slight amount of hydrogen in the gas mixture was also a prerequisite to the formation of amino groups on the surface of all three polymers (max NH2/C approximately 5%). Aging revealed that the modified polymer surfaces treated in a N2-H2 discharge were less prone to hydrophobic recovery than were surfaces treated in pure N2, due primarily to the presence of a higher density of polar groups on the surfaces. We demonstrated that H atoms in the discharge are necessary for the surface amine functionalization of polymers in a N2 atmospheric pressure DBD, regardless of polymer chemical composition. It is therefore possible to control the plasma functionalization process and to optimize the concentration and specificity of NH2 grafted onto polymer surfaces by varying the H2 concentration in a N2 atmospheric pressure DBD.


Assuntos
Hidrogênio/química , Nitrogênio/química , Polímeros/química , Pressão Atmosférica , Impedância Elétrica , Flúor/química , Estrutura Molecular , Propriedades de Superfície
5.
Langmuir ; 23(19): 9745-51, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17705411

RESUMO

Covalent grafting of biomolecules could potentially improve the biocompatibility of materials. However, these molecules have to be grafted in an active conformation to play their biological roles. The present work aims at verifying if the surface conjugation scheme of fibronectin (FN) affects the protein orientation/conformation and activity. FN was grafted onto plasma-treated fused silica using two different crosslinkers, glutaric anhydride (GA) or sulfosuccinimidyl 4-(p-maleimidophenyl)butyrate (SMPB). Fused silica was chosen as a model surface material because it presents a roughness well below the dimensions of FN, therefore allowing AFM analyses with appropriate depth resolution. Cell adhesion assays were performed to evaluate the bioactivity of grafted FN. Cell adhesion was found to be higher on GA-FN than on SMPB-FN. Since FN-radiolabeling assays allowed us to rule out a surface concentration effect (approximately 80 ng/cm2 of FN on both crosslinkers), it was hypothesized that FN adopted a more active conformation when grafted via GA. In this context, the FN conformation on both crosslinkers was investigated through AFM and contact angle analyses. Before FN grafting, GA- and SMPB-modified surfaces had a similar water contact angle, topography, and roughness. However, water contact angles of GA-FN and SMPB-FN surfaces clearly show differences in surface hydrophilicity, therefore indicating a dependence of protein organization toward the conjugation strategy. Furthermore, AFM results demonstrated that surface topography and roughness of both FN-conjugated surfaces were significantly different. Distribution analysis of FN height and diameter confirmed this observation as the protein dimensions were significantly larger on GA than SMPB. This study confirmed that the covalent immobilization scheme of biomolecules influences their conformation and, hence, their activity. Consequently, selecting the appropriate conjugation strategy is of paramount importance in retaining molecule bioactivity.


Assuntos
Fibronectinas/química , Dióxido de Silício/química , Anidridos/química , Células Imobilizadas , Reagentes de Ligações Cruzadas/química , Glutaratos/química , Microscopia de Força Atômica , Conformação Proteica , Succinimidas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA