Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Ecol Environ ; 20(1): 49-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873359

RESUMO

Regional-scale ecological processes, such as the spatial flows of material, energy, and organisms, are fundamental for maintaining biodiversity and ecosystem functioning in river networks. Yet these processes remain largely overlooked in most river management practices and underlying policies. Here, we propose adoption of a meta-system approach, where regional processes acting at different levels of ecological organization - populations, communities, and ecosystems - are integrated into conventional river conservation, restoration, and biomonitoring. We also describe a series of measurements and indicators that could be assimilated into the implementation of relevant biodiversity and environmental policies. Finally, we highlight the need for alternative management strategies that can guide practitioners toward applying recent advances in ecology to preserve and restore river ecosystems and the ecosystem services they provide, in the context of increasing alteration of river network connectivity worldwide.

2.
Glob Chang Biol ; 27(17): 4024-4039, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34032337

RESUMO

Ecological communities can remain stable in the face of disturbance if their constituent species have different resistance and resilience strategies. In turn, local stability scales up regionally if heterogeneous landscapes maintain spatial asynchrony across discrete populations-but not if large-scale stressors synchronize environmental conditions and biological responses. Here, we hypothesized that droughts could drastically decrease the stability of invertebrate metapopulations both by filtering out poorly adapted species locally, and by synchronizing their dynamics across a river network. We tested this hypothesis via multivariate autoregressive state-space (MARSS) models on spatially replicated, long-term data describing aquatic invertebrate communities and hydrological conditions in a set of temperate, lowland streams subject to seasonal and supraseasonal drying events. This quantitative approach allowed us to assess the influence of local (flow magnitude) and network-scale (hydrological connectivity) drivers on invertebrate long-term trajectories, and to simulate near-future responses to a range of drought scenarios. We found that fluctuations in species abundances were heterogeneous across communities and driven by a combination of hydrological and stochastic drivers. Among metapopulations, increasing extent of dry reaches reduced the abundance of functional groups with low resistance or resilience capacities (i.e. low ability to persist in situ or recolonize from elsewhere, respectively). Our simulations revealed that metapopulation quasi-extinction risk for taxa vulnerable to drought increased exponentially as flowing habitats contracted within the river network, whereas the risk for taxa with resistance and resilience traits remained stable. Our results suggest that drought can be a synchronizing agent in riverscapes, potentially leading to regional quasi-extinction of species with lower resistance and resilience abilities. Better recognition of drought-driven synchronization may increase realism in species extinction forecasts as hydroclimatic extremes continue to intensify worldwide.


Assuntos
Secas , Rios , Animais , Ecossistema , Hidrologia , Invertebrados
3.
J Anim Ecol ; 90(4): 886-898, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368270

RESUMO

Community responses to and recovery from disturbances depend on local (e.g. presence of refuges) and regional (connectivity to recolonization sources) factors. Droughts are becoming more frequent in boreal regions, and are likely to constitute a severe disturbance for boreal stream communities where organisms largely lack adaptations to such hydrological extremes. We conducted an experiment in 24 semi-natural stream flumes to assess the effects of local and regional factors on the responses of benthic invertebrate communities to a short-term drought. We manipulated flow (drought vs. constant-flow), spatial arrangement of leaf litter patches (aggregated vs. evenly distributed) and colonization from regional species pool (enhanced vs. ambient connectivity) to test the combined effects of disturbance, resource arrangement and connectivity on the structural and functional responses of benthic invertebrate communities. We found that a drought as short as 1 week reduced invertebrate taxonomic richness and abundance, mainly through stochastic extinctions. Such changes in richness were not reflected in functional diversity. This suggests that communities were characterized by a high degree of functional redundancy, which allowed maintenance of functional diversity despite species losses. Feeding groups responded differently to drought, with organic matter decomposers responding more than scrapers and predators. Three weeks were insufficient for complete invertebrate community recovery from drought. However, recovery was greater in channels subjected to enhanced connectivity, which increased taxonomic diversity and abundance of certain taxa. Spatial configuration of resources explained the least variation in our response variables, having a significant effect only on invertebrate abundance and evenness (both sampling occasions) and taxonomic richness (end of recovery period). Even a short drought, if occurring late in the season, may not allow communities to recover before the onset of winter, thus having a potentially long-lasting effect on stream communities. For boreal headwaters, extreme dewatering poses a novel disturbance regime that may trigger substantial and potentially irreversible changes. An improved understanding of such changes is needed to underpin adaptive management strategies in these increasingly fragmented and disturbed ecosystems.


Assuntos
Secas , Rios , Animais , Ecossistema , Invertebrados , Processos Estocásticos
4.
Glob Chang Biol ; 26(6): 3455-3472, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124522

RESUMO

Ongoing climate change is increasing the occurrence and intensity of drought episodes worldwide, including in boreal regions not previously regarded as drought prone, and where the impacts of drought remain poorly understood. Ecological connectivity is one factor that might influence community structure and ecosystem functioning post-drought, by facilitating the recovery of sensitive species via dispersal at both local (e.g. a nearby habitat patch) and regional (from other systems within the same region) scales. In an outdoor mesocosm experiment, we investigated how impacts of drought on boreal stream ecosystems are altered by the spatial arrangement of local habitat patches within stream channels, and variation in ecological connectivity with a regional species pool. We measured basal ecosystem processes underlying carbon and nutrient cycling: (a) algal biomass accrual; (b) microbial respiration; and (c) decomposition of organic matter, and sampled communities of aquatic fungi and benthic invertebrates. An 8-day drought event had strong impacts on both community structure and ecosystem functioning, including algal accrual, leaf decomposition and microbial respiration, with many of these impacts persisting even after water levels had been restored for 3.5 weeks. Enhanced connectivity with the regional species pool and increased aggregation of habitat patches also affected multiple response variables, especially those associated with microbes, and in some cases reduced the effects of drought to a small extent. This indicates that spatial processes might play a role in the resilience of communities and ecosystem functioning, given enough time. These effects were however insufficient to facilitate significant recovery in algal growth before seasonal dieback began in autumn. The limited resilience of ecosystem functioning in our experiment suggests that even short-term droughts can have extended consequences for stream ecosystems in the world's vast boreal region, and especially on the ecosystem processes and services mediated by algal biofilms.


Assuntos
Ecossistema , Rios , Animais , Secas , Fungos , Invertebrados
5.
Bioscience ; 70(5): 427-438, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32440024

RESUMO

Rapid shifts in biotic communities due to environmental variability challenge the detection of anthropogenic impacts by current biomonitoring programs. Metacommunity ecology has the potential to inform such programs, because it combines dispersal processes with niche-based approaches and recognizes variability in community composition. Using intermittent rivers-prevalent and highly dynamic ecosystems that sometimes dry-we develop a conceptual model to illustrate how dispersal limitation and flow intermittence influence the performance of biological indices. We produce a methodological framework integrating physical- and organismal-based dispersal measurements into predictive modeling, to inform development of dynamic ecological quality assessments. Such metacommunity-based approaches could be extended to other ecosystems and are required to underpin our capacity to monitor and protect ecosystems threatened under future environmental changes.

6.
Glob Chang Biol ; 24(6): 2434-2446, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29341358

RESUMO

Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change.


Assuntos
Biodiversidade , Mudança Climática , Invertebrados/classificação , Animais , Finlândia , Hidrologia , Invertebrados/fisiologia , Rios , Temperatura
7.
Ecology ; 104(2): e3911, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36335551

RESUMO

Biota in disturbance-prone landscapes have evolved a variety of strategies to persist long term, either locally (resistance) or by regional recolonization (resilience). Habitat fragmentation and isolation can limit the availability of recolonization pathways, and thus the dynamics of post-disturbance community reestablishment. However, empirical studies on how isolation may control the mechanisms that enable community recovery remain scarce. Here, we studied a pristine intermittent stream (Chalone Creek, Pinnacles National Park, California) to understand how isolation (distance from a perennial pool) alters invertebrate community recolonization after drying. We monitored benthic invertebrate reestablishment during the rewetting phase along a ~2-km gradient of isolation, using mesh traps that selected for specific recolonization pathways (i.e., drift, flying, swimming/crawling, and vertical migration from the hyporheic). We collected daily emigration samples, surveyed the reestablished benthic community after 6 weeks, and compared assemblages across trap types and sites. We found that isolation mediated migration dynamics by delaying peak vertical migration from the hyporheic by ca. 1 day on average per 250 m of dry streambed. The relative importance of reestablishment mechanisms varied longitudinally-with more resistance strategists (up to 99.3% of encountered individuals) in the upstream reaches, and increased drift and aerial dispersers in the more fragmented habitats (up to 17.2% and 18%, respectively). Resistance strategists persisting in the hyporheic dominated overall (88.2% of individuals, ranging 52.9%-99.3% across sites), but notably most of these organisms subsequently outmigrated downstream (85.6% on average, ranging 52.1%-96% across sites). Thus, contrary to conventional wisdom, resistance strategists largely contributed to downstream resilience as well as to local community recovery. Finally, increased isolation was associated with a general decrease in benthic invertebrate diversity, and up to a 3-fold increase in the relative abundance of drought-resistant stoneflies. Our results advance the notion that understanding spatial context is key to predicting post-disturbance community dynamics. Considering the interaction between disturbance and fragmentation may help inform conservation in ecosystems that are subject to novel environmental regimes.


Assuntos
Ecossistema , Insetos , Humanos , Animais , Invertebrados , Biota , Secas
8.
Sci Data ; 7(1): 386, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177529

RESUMO

Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.


Assuntos
Distribuição Animal , Organismos Aquáticos , Invertebrados , Animais , Conservação dos Recursos Naturais , Ecologia , Monitoramento Ambiental , Europa (Continente)
9.
Ambio ; 48(1): 100-110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29663267

RESUMO

We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO3-N) and phosphate (PO4-P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.


Assuntos
Nutrientes , Rios , Biomassa , Fungos , Geologia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA