Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breed Sci ; 70(4): 449-455, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32968347

RESUMO

In yellow soybeans, inhibition of seed coat pigmentation by RNA silencing of CHS genes is suppressed by low temperature and a viral suppressor, resulting in 'cold-induced seed coat discoloration' and 'seed mottling', respectively. Differences exist in the degree of cold-induced seed coat discoloration among Japanese yellow soybean cultivars; for example, Toyomusume is sensitive, Toyohomare has some tolerance, and Toyoharuka is highly tolerant. In this study, we compared the degree of seed mottling severity due to soybean mosaic virus (SMV) among these three soybean cultivars. Obvious differences were found, with the order of severity as follows: Toyohomare > Toyomusume > Toyoharuka. RNA gel blot analysis indicated that CHS transcript abundance in the seed coat, which was increased by SMV infection, was responsible for the severity of seed mottling. Quantitative reverse transcription PCR analysis revealed why mottling was most severe in SMV-infected Toyohomare: the SMV titer in its seed coat was higher than in the other two infected cultivars. We further suggest that a major gene (Ic) for tolerance to cold-induced seed coat discoloration can relieve the severity of seed mottling in SMV-infected Toyoharuka.

2.
Breed Sci ; 69(4): 665-671, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31988631

RESUMO

Seed coat cracking in soybeans [Glycine max (L). Merr.] leads to commercial and agronomic losses. The Japanese elite soybean cultivar 'Fukuyutaka' is often used as a parent for breeding, but its high rate of seed coat cracking is an obstacle to its further use in breeding programs. To establish a DNA marker-assisted selection system for seed coat cracking, genetic factors related to high rates of seed coat cracking were surveyed, and a quantitative trait locus (QTL) with a stable effect on seed coat cracking in both years of a two-year replication experiment was detected on chromosome 20. Comparison of a set of near-isogenic lines (NILs) around this locus verified that the presence of the 'Fukuyutaka' allele significantly increased seed coat cracking in the kernel. The locus is located in a genomic region spanning 3.2 Mb. Marker-assisted selection for the locus will improve the selection efficiency of 'Fukuyutaka'-derived breeding populations.

3.
Breed Sci ; 67(4): 363-369, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29085246

RESUMO

Most soybean cultivars possess broad leaflets; however, a recessive allele on the Ln locus is known to cause the alteration of broad to narrow leaflets. The recessive allele ln has also been considered to increase the number of seeds per pod (NSP) and has the potential to improve yield. Recently, Gm-JAG1 (Glyma20g25000), a gene controlling Ln, has been shown to complement leaf shape and silique length in Arabidopsis mutants. However, whether Gm-JAG1 is responsible for those traits in soybean is not yet known. In this study, we investigated the pleiotropic effect of soybean Ln gene on leaflet shape and NSP by using two independent soybean Gm-jag1 mutants and four ln near isogenic lines (NILs). The leaflet shape was evaluated using a leaf image analysis software, SmartLeaf, which was customized from SmartGrain. The leaflets of both the Gm-jag1 mutants were longer and narrower than those of the wild-type plants. Interestingly, the image analysis results clarified that the perimeter of the mutant leaflets did not change, although their leaflet area decreased. Furthermore, one mutant line with narrow leaflets showed significantly higher NSP than that in the wild (or Ln) genotype, indicating that soybean Ln gene pleiotropically controls leaflet shape and NSP.

4.
Breed Sci ; 61(5): 625-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136501

RESUMO

The peanut stunt virus (PSV) causes yield losses in soybean and reduced seed quality due to seed mottling. The objectives of this study were to determine the phenotypic reactions of soybean germplasms to inoculation with two PSV isolates (PSV-K, PSV-T), the inheritance of PSV resistance in soybean cultivars, and the locus of the PSV resistance gene. We investigated the PSV resistance of 132 soybean cultivars to both PSV isolates; of these, 73 cultivars exhibited resistance to both PSV isolates. Three resistant cultivars (Harosoy, Tsurunotamago 1 and Hyuga) were crossed with the susceptible cultivar Enrei. The crosses were evaluated in the F(1), F(2) and F(2:3) generations for their reactions to inoculation with the two PSV isolates. In an allelism test, we crossed Harosoy and Tsurunotamago 1 with the resistant cultivar Hyuga. The results revealed that PSV resistance in these cultivars is controlled by a single dominant gene at the same locus. We have proposed Rpsv1, as the name of the resistance gene in Hyuga. We also constructed a linkage map using recombinant inbred lines between Hyuga × Enrei using 176 SSR markers. We mapped Rpsv1 near the Satt435 locus on soybean chromosome 7.

5.
Breed Sci ; 61(5): 639-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136503

RESUMO

Saponins are sterols or triterpene glycosides that are widely distributed in plants. The biosynthesis of soybean saponins is thought to involve many kinds of glycosyltransferases, which is reflected in their structural diversity. Here, we performed linkage analyses of the Sg-3 and Sg-4 loci, which may control the sugar chain composition at the C-3 sugar moieties of the soybean saponin aglycones soyasapogenols A and B. The Sg-3 locus, which controls the production of group A saponin Af, was mapped to chromosome (Chr-) 10. The Sg-4 locus, which controls the production of DDMP saponin ßa, was mapped to Chr-1. To elucidate the preference of sugar chain formation at the C-3 and C-22 positions, we analyzed the F(2) population derived from a cross between a mutant variety, Kinusayaka (sg-1(0)), for the sugar chain structure at C-22 position, and Mikuriya-ao (sg-3), with respect to the segregation of the composition of the group A saponins, and found that the formation of these sugar chains was independently regulated. Furthermore, a novel saponin, predicted to be A0-γg, 3-O-[ß-d-galactopyranosyl (1→2)-ß-d-glucuronopyranosyl]-22-O-α-l-arabinopyranosyl-soyasapogenol A, appeared in the hypocotyl of F(2) individuals with genotype sg-1(0)/sg-1(0)sg-3/sg-3.

6.
Front Plant Sci ; 12: 729645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539720

RESUMO

Genomic selection and marker-assisted recurrent selection have been applied to improve quantitative traits in many cross-pollinated crops. However, such selection is not feasible in self-pollinated crops owing to laborious crossing procedures. In this study, we developed a simulation-based selection strategy that makes use of a trait prediction model based on genomic information to predict the phenotype of the progeny for all possible crossing combinations. These predictions are then used to select the best cross combinations for the selection of the given trait. In our simulated experiment, using a biparental initial population with a heritability set to 0.3, 0.6, or 1.0 and the number of quantitative trait loci set to 30 or 100, the genetic gain of the proposed strategy was higher or equal to that of conventional recurrent selection method in the early selection cycles, although the number of cross combinations of the proposed strategy was considerably reduced in each cycle. Moreover, this strategy was demonstrated to increase or decrease seed protein content in soybean recombinant inbred lines using SNP markers. Information on 29 genomic regions associated with seed protein content was used to construct the prediction model and conduct simulation. After two selection cycles, the selected progeny had significantly higher or lower seed protein contents than those from the initial population. These results suggest that our strategy is effective in obtaining superior progeny over a short period with minimal crossing and has the potential to efficiently improve the target quantitative traits in self-pollinated crops.

7.
Nat Commun ; 10(1): 4033, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562302

RESUMO

Eukaryotic positive-strand RNA viruses replicate their genomes in membranous compartments formed in a host cell, which sequesters the dsRNA replication intermediate from antiviral immune surveillance. Here, we find that soybean has developed a way to overcome this sequestration. We report the positional cloning of the broad-spectrum soybean mosaic virus resistance gene Rsv4, which encodes an RNase H family protein with dsRNA-degrading activity. An active-site mutant of Rsv4 is incapable of inhibiting virus multiplication and is associated with an active viral RNA polymerase complex in infected cells. These results suggest that Rsv4 enters the viral replication compartment and degrades viral dsRNA. Inspired by this model, we design three plant-gene-derived dsRNases that can inhibit the multiplication of the respective target viruses. These findings suggest a method for developing crops resistant to any target positive-strand RNA virus by fusion of endogenous host genes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Glycine max/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Potyvirus/genética , RNA Polimerases Dirigidas por DNA/imunologia , Resistência à Doença/genética , Genes de Plantas , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Potyvirus/imunologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Glycine max/genética , Glycine max/virologia , Replicação Viral/imunologia
8.
Plant Mol Biol ; 51(1): 143-52, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12602898

RESUMO

The Gns1 gene of rice (Oryza sativa L. japonica) encodes 1,3;1,4-beta glucanase (EC 3.2.1.73), which hydrolyzes 1,3;1,4-beta-glucosidic linkages on 1,3;1,4-beta-glucan, an important component of cell walls in the Poaceae family. RNA and protein gel blot analyses demonstrated that blast disease or dark treatment induced the expression of the Gns1 gene. To assess the function of the Gns1 gene in disease resistance, we characterized transgenic rice plants constitutively expressing the Gns1 gene. The introduced Gns1 gene was driven by the CaMV 35S promoter and its products were found in the apoplast and accumulated in up to 0.1% of total soluble protein in leaves. Although transgenic plants showed stunted growth and impaired root formation, fertility, germination, and coleoptile elongation appeared unaffected compared to non-transgenic control plants, indicating that Gns1 does not play a crucial role in rice germination and coleoptile elongation. When transgenic plants were inoculated with virulent blast fungus (Magnaporthe grisea), they developed many resistant-type lesions on the inoculated leaf accompanying earlier activation of defense-related genes PR-1 and PBZ1 than in control plants. Transgenic plants spontaneously produced brown specks, similar in appearance to those reported for an initiation type of disease-lesion-mimic mutants, on the third and fourth leaves and occasionally on older leaves without inoculation of pathogens. Expression of the two defense-related genes was drastically increased after the emergence of the lesion-mimic phenotype.


Assuntos
Glicosídeo Hidrolases/genética , Oryza/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA , Genes de Plantas/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Oryza/enzimologia , Pinaceae/enzimologia , Pinaceae/genética , Doenças das Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Ácido Salicílico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA